Preview

Cancer Urology

Advanced search

MOLECULAR EPIDEMIOLOGY OF RENAL CANCER

https://doi.org/10.17650/1726-9776-2018-14-3-107-119

Abstract

Kidney cancer consists of renal cell cancer (RCC) accounting for over 90 % of all kidney carcinomas and the transitional cell cancer. Clear cell cancer is a predominant type (80–85 %) of RCC. Smoking, overweight, obesity, hypertension, occupational exposures to pesticides, specifically to trichloroethylene are considered causal risk factors for sporadic i.e. non-hereditary RCC. The majority of sporadic RCC have polygenic etiology. They develop as a result of combined effect of large number of low penetrance genetic susceptibility genes (genetic polymorphism). The interplay of exposures to environmental risk factors and genetic susceptibility of exposed individuals is believed to influence the risk of developing sporadic RCC. Inheritance of high penetrance genes is associated with very high risk of the RCC. To these genes belongs, for example, VHL (von Hippel–Lindau). Germline mutations in VHL are causing VHL syndrome and hereditary type of RCC. Risk of RCC in individuals with germ-line mutations is very high however the proportion RCC associated with these events is very low (>5–7 %). Environmental factors virtually do not influence the risk of these cancers.

The studies in molecular epidemiology based on candidate gene approach have shown that certain types (variants) of polymorphisms of GST, MTHFR, TYMS, VHL genes are associated with RCC. The genome wide association studies identified over twenty locus with single nucleotide polymorphism affecting the risk of RCC. The risk loci so far identified for RCC account for only about 10 % of the familial risk of RCC. Thus more studies with larger sample size are needed. As more RCC susceptibility alleles are discovered, deciphering the biological basis of risk variants should provide new insights into the biology of RCC that may lead to new approaches to prevention, early detection and therapeutic intervention.

About the Authors

D. G. Zaridze
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478.


Competing Interests:

No conflict of interest.



A. F. Mukeriya
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478.


Competing Interests:

No conflict of interest.



O. V. Shan’gina
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478.


Competing Interests:

No conflict of interest.



V. B. Matveev
N.N. Blokhin National Medical Research Center of Oncology, Ministry of Health of Russia
Russian Federation

24 Kashirskoe Shosse, Moscow 115478.


Competing Interests:

No conflict of interest.



References

1. Li P., Znaor A., Holcatova I. et al. Regional geographic variations in kidney cancer incidence rates in European countries. Eur Urol 2015;67(6):1134–41. DOI: 10.1016/j.eururo.2014.11.001. PMID: 25465966.

2. http://www.oncology.ru/service/statistics/malignant_tumors/.

3. Siegel R.L., Miller K.D., Jemal A. Cancer Statistics, 2017. CA Cancer J Clin 2017;67(1):7–30. DOI: 10.3322/caac.21387. PMID: 28055103.

4. Chow W.H., Dong L.M., Devesa S.S. Epidemiology and risk factors for kidney cancer. Nat Rev Urol 2010;7(5):245–57. DOI: 10.1038/nrurol.2010.46. PMID: 20448658.

5. Welch H.G., Black W.C. Overdiagnosis in cancer. J Natl Cancer Inst 2010;102(9):605–13. DOI: 10.1093/jnci/djq099. PMID: 20413742.

6. Zaridze D.G. Cancer prevention. A guide for doctors. Moscow: IMA-PRESS, 2009. 224 p. (In Russ.).

7. Lindor N.M., Lindor C.G., Green M.H. Hereditary neoplastic syndrome. In: Cancer Epidemiology and Prevention. Eds.: D. Schottenfeld, J. Fraumeni. New York: Oxford University Press, 2006. Pp. 562–576.

8. Caporaso N.E. Genetic modifiers of cancer risk. In: Cancer Epidemiology and Prevention. Eds.: D. Schottenfeld, J. Fraumeni. New York: Oxford University Press, 2006. Pp. 577–602.

9. Taioli E. Gene-environment interaction in tobacco-related cancers. Carcinogenesis 2008;29(8):1467–74. DOI: 10.1093/carcin/bgn062. PMID: 18550573.

10. Zaridze D.G. Molecular epidemiology of cancer. Biokhimiya = Biochemistry 2009;73(5):663–76. (In Russ.).

11. García-Closas M., Malats N., Silverman D. et al. NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses. Lancet 2005;366(9486):649–59. DOI: 10.1016/S0140-6736(05)67137-1. PMID: 16112301.

12. Haas N.B., Nathanson K.L. Hereditary kidney cancer syndromes. Adv Chronic Kidney Dis 2014;21(1):81–90. DOI: 10.1053/j.ackd.2013.10.001. PMID: 24359990.

13. Karami S., Boffetta P., Rothman N. et al. Renal cell carcinoma, occupational pesticide exposure and modification by glutathione S-transferase polymorphisms. Carcinogenesis 2008;29(8):1567–71. DOI: 10.1093/carcin/bgn153. PMID: 18566013

14. Moore L.E., Boffetta P., Karami S. et al. Occupational trichloroethylene exposure and renal carcinoma risk: evidence of genetic susceptibility by reductive metabolism gene variants. Cancer Res 2010;70(16):6527–36. DOI: 10.1158/0008-5472.CAN-09-4167. PMID: 20663906.

15. World Cancer Research Fund & American Institute of Cancer Research. Food, Nutrition, Physical Activity and the Prevention of Cancer: a Global Perspective. Washington, DC: WCRF. 2007. Available at: http://www.aicr.org/assets/docs/pdf/reports/Second_Expert_Report.pdf.

16. Hecht S.S., Trushin N., Rigotty J. et al. Inhibitory effects of 6-phenylhexyl isothiocyanate on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone metabolic activation and lung tumorigenesis in rats. Carcino-genesis 1996;17(9):2061–7. PMID: 8824535.

17. Fowke J.H., Shu X.O., Dai Q. et al. Urinary isothiocyanate excretion, brassica consumption, and gene polymorphisms among women living in Shanghai, China. Cancer Epidemiol Biomarkers Prev 2003;12(12):1536–9. PMID: 14693750.

18. Moore L.E., Brennan P., Karami S. et al. Glutathione S-transferase polymorphisms, cruciferous vegetable intake and cancer risk in the Central and Eastern European Kidney Cancer Study. Carcinogenesis 2007;28(9):1960–4. DOI: 10.1093/carcin/bgm151. PMID: 17617661.

19. Moore L.E., Hung R., Karami S. et al. Folate metabolism genes, vegetable intake and renal cancer risk in central Europe. Int J Cancer 2008;122(8):1710–5. DOI: 10.1002/ijc.23318. PMID: 18098291.

20. Moore L.E., Nickerson M.L., Brennan P. et al. Von Hippel–Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 2011;7(10):e1002312. DOI: 10.1371/journal.pgen.1002312. PMID: 22022277.

21. Purdue M.P., Johansson M., Zelenika D. et al. Genome-wide association study of renal cell carcinoma identifies two susceptibility loci on 2p21 and 11q13.3. Nat Genet 2011;43(1):60–5. DOI: 10.1038/ng.723. PMID: 21131975.

22. Han S.S., Yeager M., Moore L.E. et al. The chromosome 2p21 region harbors a complex genetic architecture for association with risk for renal cell carcinoma. Hum Mol Genet 2012;21(5):1190–200. DOI: 10.1093/hmg/ddr551. PMID: 22113997.

23. Wu X., Scelo G., Purdue M.P. et al. A genome-wide association study identifies a novel susceptibility locus for renal cell carcinoma on 12p11.23. Hum Mol Genet 2012;21(2):456–62. DOI: 10.1093/hmg/ddr479. PMID: 22010048.

24. Henrion M., Frampton M., Scelo G. et al. Common variation at 2q22.3 (ZEB2) influences the risk of renal cancer. Hum Mol Genet 2013;22(4):825–31. DOI: 10.1093/hmg/dds489. PMID: 23184150.

25. Gudmundsson J., Sulem P., Gudbjartsson D.F. et al. A common variant at 8q24.21 is associated with renal cell cancer. Nat Commun 2013;4:2776. DOI: 10.1038/ncomms3776. PMID: 24220699.

26. Scelo G., Purdue M.P., Brown K.M. et al. Genome-wide association study identifies multiple risk loci for renal cell carcinoma. Nat Commun 2017;8:15724. DOI: 10.1038/ncomms15724. PMID: 28598434.

27. Grampp S., Schmid V., Salama R. et al. Multiple renal cancer susceptibility polymorphisms modulate the HIF pathway. PLoS Genet 2017;13(7):e1006872. DOI: 10.1371/journal.pgen.1006872. PMID: 28715484.

28. Heid I.M., Jackson A.U., Randall J.C. et al. Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 2010;42(11):949– 60. DOI: 10.1038/ng.685. PMID: 20935629.


Review

For citations:


Zaridze D.G., Mukeriya A.F., Shan’gina O.V., Matveev V.B. MOLECULAR EPIDEMIOLOGY OF RENAL CANCER. Cancer Urology. 2018;14(3):107-119. (In Russ.) https://doi.org/10.17650/1726-9776-2018-14-3-107-119

Views: 1361


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X