COMPLEX ANALYSIS OF PROGNOSTIC FACTORS IN PATIENTS WITH ADVANCED AND LOCALLY ADVANCED PROSTATE CANCER
https://doi.org/10.17650/1726-9776-2009-5-1-56-63
Abstract
Objective: to study the likelihood of tumor extracapsular invasion (EI) and lymphogenous metastasis (N+) in patients with prostate cancer(PC) after radical prostatectomy (RPE) on the basis of prognostic factors.
Subjects and methods. Fifty hundred patients who had undergone RPE in 1999-2008 were enrolled in the study. The patients' age was63.2±6.2 (range 46-78) years; median prostate-specific antigen (PSA) was 11.0 ng/ml (interquartile range 7.4-19.5 ng/ml). According topreoperative findings, 418 (78.9%) and 112 (21.1%) patients were diagnosed as having advanced and locally advanced PC, respectively.According to Gleason tumor grades, the patients were distributed as follows: 2-4 scores in 94 (17.7%) patients; 5-6 scores in 266 (50.2%);7 scores in 103 (19.4%); 8-10 scores in 26 (4.9%). Planned histological studies revealed no tumor in 1.5% of cases; advanced and locallyadvanced PC was diagnosed in 54.5 and 45.5% of cases, respectively; of them N+ was in 32.9%.
Results. A correlation of prognostic factors and expected outcomes was analyzed, the results of which were used to select the most importantpredictors of the extension of a tumor process (percent of positive biopsy specimens, sum of Gleason scores, PSA level, clinical process stage,presence of EI from preoperative data). Regression models were created considering the results of the logistic regression analysis. To evalu-ate efficiency, the area under the AUC-ROC curve was calculated for each model. For evaluation of the comparative effectiveness, the AUC-ROC curve was also estimated for each outcome, by applying the Partin tables.
Conclusions. The developed models of predicting the presence of tumor EI and metastatic spread to the lymph nodes make it possible to havea good agreement of the predicted likelihood of an outcome and the results of a histological study. These models show a higher prognosticeffectiveness than do the Partin tables.
About the Authors
N. V. VorobyevRussian Federation
B. Ya. Alekseyev
Russian Federation
V. V. Filimonov
Russian Federation
A. Yu. Zemlyansky
Russian Federation
References
1. Greenlee R.T., Hill-Harmon M.B.,Murray T. et al. Cancer statistics, 2001. CACancer J Clin 2001;51:15—36.
2. Чиссов В.И., Старинский В.В. Забо-леваемость злокачественными новооб-разованиями в России. М., 2007.
3. Матвеев Б.П. Клиническая онкоуро-логия. М., 2003.
4. Лопаткин Н.А., Поповкин Н.Н., Зи-борова И.В. и др. К вопросу об эпиде-миологии рака предстательной железыв России. В сб.: Материалы Пленумаправления Российского общества уро-логов. Омск, 2003. с. 27—30.
5. Велиев Е.И. Оптимизация хирурги-ческого лечения больных локализован-ным раком предстательной железы. Ав-тореф. дис. … докт. мед. наук. СПб.,2003.
6. Пушкарь Д.Ю. Радикальная проста-тэктомия. М.; МЕДпресс-информ,2002.
7. Переверзев А.С., Коган М.И. Ракпростаты. Харьков, 2004.
8. Wang L., Hricak H., Kattan M.W. et al.Combined endorectal and phased-arrayMRI in the prediction of pelvic lymphnode metastasis in prostate cancer. AJRAm J Roentgenol 2006;186(3):743—8.
9. Levran Z., Gonzalez J.A., Diokno A.C.et al. Are pelvic computed tomography,bone scan and pelvic lymphadenectomynecessary in the staging of prostatic cancer?Br J Urol 1995;75(6):778—81.
10. Suarez P., Mondes L., Bernardo N. et al. Correlation between computed axialtomography and ileum obturating lym-phadenectomy in localized adenocarcino-ma of the prostate. Arch Esp Urol1997;50:131—3.
11. Ohori M., Kattan M.W., Koh H. et al.Predicting the presence and side of extra-capsular extension: a nomogram for stagingprostate cancer. J Urol 2004;171:1844—9.
12. Partin A.W., Carter H.B. The use ofprostate-specific antigen and free/totalprostate-specific antigen in the diagnosis oflocalized prostate cancer. Urol Clin NorthAm 1996;23(4):531—40.
13. Partin A.W., Kattan M.W., Subong E.N.et al. Combination of prostate-specificantigen, clinical stage, and Gleason scoreto predict pathological stage of localizedprostate cancer. A multi-institutionalupdate. JAMA 1997;277(18):1445—51.
14. Steuber T., Graefen M., Haese A. et al.Validation of a nomogram for prediction ofside specific extracapsular extension at rad-ical prostatectomy. J Urol 2006;175:939—44.
15. Koh H., Kattan M.W., Scardino P.T. et al. A nomogram to predict seminal vesi-cle invasion by the extent and location ofcancer in systematic biopsy results. J Urol2003;170:1203—8.
16. Cagiannos I., Karakiewicz P., Eastham J.A. et al. A preoperative nomo-gram identifying decreased risk of positivepelvic lymph nodes in patients with prostatecancer. J Urol 2003;170:1798—803.
17. Briganti A., Chun F.K., Salonia A. et al. Validation of a nomogram predictingthe probability of lymph node invasionamong patients undergoing radical prostate-ctomy and an extended pelvic lym-phadenectomy. Eur Urol 2006;49:1019—27.
18. Schwarzer G., Vach W., Schumacher M. On the misuses of artificialneural networks for prognostic and diag-nostic classification in oncology. Stat Med2000;19:541—61.
19. Karakiewicz P.I., Chun F.K., Briganti A. et al. Prostate cancer nomo-grams are superior to neural networks. CanJ Urol 2006;13:18—25.
20. Kattan M.W. Comparison of Coxregression with other methods for deter-mining prediction models and nomo-grams.J Urol 2003;170:6—9.
21. Kattan M.W. Nomograms.Introduction. Semin Urol Oncol2002;20:79—81.
22. Ross P.L., Scardino P.T., Kattan M.W.A catalog of prostate cancer nomograms. JUrol 2001;165:1562—8.
23. Kattan M.W., Eastham J.A., Stapleton A.M. et al. A preoperative nomo-gram for disease recurrence following radi-cal prostatectomy for prostate cancer. JNatl Cancer Inst 1998;90:766—71.
24. Stephenson A.J., Scardino P.T.,Eastham J.A. et al. Preoperative nomogrampredicting the 10-year probability ofprostate cancer recurrence after radicalprostatectomy. J Natl Cancer Inst2006;98:715—7.
25. Kattan M.W., Wheeler T.M., Scardino P.T. Postoperative nomogram fordisease recurrence after radical prostatecto-my for prostate cancer. J Clin Oncol1999;17:1499—507.
26. Stephenson A.J., Scardino P.T.,Eastham J.A. et al. Postoperative nomo-gram predicting the 10-year probability ofprostate cancer recurrence after radicalprostatectomy. J Clin Oncol2005;23:7005—12.
27. Snow P.B., Smith D.S., Catalona W.J.Artificial neural networks in the diagnosisand prognosis of prostate cancer: a pilotstudy. J Urol 1994;152:1923—6.
28. Pepe M.S., Janes H., Longton G. et al.Limitations of the odds ratio in gauging theperformance of a diagnostic, prognostic, orscreening marker. Am J Epidemiol2004;159:882—90.
29. Kattan M.W. Judging new markers bytheir ability to improve predictive accuracy.J Natl Cancer Inst 2003;95:634—5.3
30. Bradley E., TibshiraniR.J. Monographs on statistics and appliedprobability: an introduction to the boot-strap. NY: Chapman and Hall/CRC, 1993.p. 275.
31. Schroder F., Kattan M.W. The compa-rability of models for predicting the risk ofa positive prostate biopsy with prostate-spe-cific antigen. Eur Urol 2008;54(2):274—90.
Review
For citations:
Vorobyev N.V., Alekseyev B.Ya., Filimonov V.V., Zemlyansky A.Yu. COMPLEX ANALYSIS OF PROGNOSTIC FACTORS IN PATIENTS WITH ADVANCED AND LOCALLY ADVANCED PROSTATE CANCER. Cancer Urology. 2009;5(1):56-63. (In Russ.) https://doi.org/10.17650/1726-9776-2009-5-1-56-63