Preview

Cancer Urology

Advanced search

Basic characteristics and features of the molecular genetic test systems designed for non-invasive diagnostics and prognosis of prostate cancer and bladder cancer

https://doi.org/10.17650/1726-9776-2019-15-4-18-29

Abstract

Improving the laboratory diagnosis of prostate cancer and bladder cancer are still an actual problem in modern urologic oncology. Test systems for DNA or RNA alterations that occurred during carcinogenesis and associated with the malignant tumor and the prognosis of disease have been actively developed in recent years. Here we reviewed the data published mainly in the last 5 years about the molecular genetic kits for diagnosis (Progensa, SelectMDx, ExoDx Prostate Test, Prosta-Test, Confirm MDx) and assessment of prognosis (Prolaris, Decipher, Oncotype DX) in patients with prostate cancer, discussed their sensitivity and specificity. The characteristics of analogous kits and panels for bladder cancer (UroVysion, CertNDx Bladder Cancer Assay, UroSEEK, mutations in the FGFR3 and TERT genes, and the Cxbladder Monitor/Detect/Triage kit's line) were systematized. Particularly we focused on the description of the patient cohorts for whom kits mentioned above have greater diagnostic accuracy, described limitations of these test systems in consequence both a methodological and registration aspects, and their use in combination with other tumor markers. This review is aimed at oncologists, urologists, laboratory geneticists and specialists in related professions.

About the Authors

D. S. Mikhaylenko
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia; N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Center, Ministry of Health of Russia; N.P. Bochkov Research Centre for Medical Genetics
Russian Federation

Build. 2, 8 Trubetskaya St., Moscow 119991, 

513rd Parkovaya St., Moscow 105425, 

1 Moskvorech'e St., Moscow 115522



S. A. Sergienko
N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

513rd Parkovaya St., Moscow 105425



B. Ya. Alekseev
N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

513rd Parkovaya St., Moscow 105425



A. D. Kaprin
N.A. Lopatkin Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

513rd Parkovaya St., Moscow 105425



M. V. Nemtsova
I.M. Sechenov First Moscow State Medical University (Sechenov University), Ministry of Health of Russia; N.P. Bochkov Research Centre for Medical Genetics
Russian Federation

Build. 2, 8 Trubetskaya St., Moscow 119991, 

1 Moskvorech'e St., Moscow 115522



References

1. Axel E.M., Matveev V.B. Statistics of malignant tumors of urinary and male urogenital organs in Russia and the countries of the former USSR. Oncourologiya = Cancer Urology 2019;15(2):15-24. (in Russ.). DOI: 10.17650/1726-9776-2019-15-2-15-24.

2. Chissov V.I., Alekseev B.Y., Rusakov I.G. М.: Geotar-Media, 2012, 688 pp. ISBN: 978-5-9704-2181-9.

3. Mikhaylenko D.S., Efremov G.D., Alekseev B.Y. Molecular genetic methods in diagnostics of hereditary and sporadic urological tumors. Spravochnik zaveduyuschego KLD = Handbook of the head of clinical laboratory 2016;2:38-46. (in Russ.).

4. Wu D., Ni J., Beretov J. et al. Urinary biomarkers in prostate cancer detection and monitoring progression. Crit Rev Oncol Hematol 2017;118:15-26. PMID: 28917266. DOI: 10.1016/j.critrevonc.2017.08.002.

5. Mikhailenko D.S., Kushlinskii N.E. The somatic mutations and aberrant methylation as potential genetic markers of urinary bladder cancer. Klinicheskaya laboratornaya diagnostica = Klin Lab Diagn 2016;61(2):78-83. (in Russ.). PMID: 27455559. DOI: 10.18821/0869-2084-2016-61-2-78-83.

6. Ploussard G., de la Taille A. The role of prostate cancer antigen 3 (PCA3) in prostate cancer detection. Expert Rev Anticancer Ther 2018;18(10):1013-20. PMID: 30016891. DOI: 10.1080/14737140.2018.1502086.

7. Hologic. Progensa PCA3 Assay 502083 rev. 003. User Guide, USA, 47 pp. URL: https://www.hologic.com/sites/default/files/2019-05/502083-IFU-PI_003_01.pdf.

8. Mikhailenko D.S., Perepechin D.V., Apolikhin O.I. et al. Markers for non-invasive molecular genetic diagnosis of oncourological diseases. Urologiia 2014;5:116-20. (in Russ.). PMID: 25807773.

9. de la Taille A., Irani J., Graefen M. et al. Clinical evaluation of the PCA3 assay in guiding initial biopsy decisions. J Urol 2011;185(6):2119-25. PMID: 21496856. DOI: 10.1016/j.juro.2011.01.075.

10. Crawford E.D., Rove K.O., Trabulsi E.J. et al. Diagnostic performance of PCA3 to detect prostate cancer in men with increased prostate specific antigen: a prospective study of 1,962 cases. J Urol 2012;188:1726-31. PMID: 22998901. DOI: 10.1016/j.juro.2012.07.023.

11. Filella X., Foj L. Novel biomarkers for prostate cancer detection and prognosis. Adv Exp Med Biol 2018;1095:15-39. PMID: 30229547. DOI: 10.1007/978-3-319-95693-0_2.

12. Chevli K.K., Duff M., Walter P. et al. Urinary PCA3 as a predictor of prostate cancer in a cohort of 3,073 men undergoing initial prostate biopsy. J Urol 2014;191(6) 1743-48. PMID: 24333241. DOI: 10.1016/j.juro.2013.12.005.

13. Osses D.F., Roobol M.J., Schoots I.G. Prediction medicine: biomarkers, risk calculators and magnetic resonance imaging as risk stratification tools in prostate cancer diagnosis. Int J Mol Sci 2019;20(7):pii: E1637. PMID: 30986955. DOI: 10.3390/ijms20071637.

14. Rodon N., Trias I., Verdu M. et al. Correlation of mRNA-PCA3 urine levels with the new grading system in prostate cancer. Rev Esp Patol 2019;52(1):20-26. PMID: 30583827. DOI: 10.1016/j.patol.2018.04.003.

15. Alshalalfa M., Verhaegh G.W., Gibb E.A. et al. Low PCA3 expression is a marker of poor differentiation in localized prostate tumors: exploratory analysis from 12,076 patients. Oncotarget 2017;8(31):50804-13. PMID: 28881605. DOI: 10.18632/oncotarget.15133.

16. Hegde J.V., Veruttipong D., Said J.W. et al. Prostate cancer antigen 3 score does not predict for adverse pathologic features at radical prostatectomy or for progression-free survival in clinically localized, intermediate- and high-risk prostate cancer. Urology 2017;107:171-7. PMID: 28552819. DOI: 10.1016/j.urology.2017.05.028.

17. Fradet V., Toren P., Nguile-Makao M. et al. Prognostic value of urinary prostate cancer antigen 3 (PCA3) during active surveillance of patients with low-risk prostate cancer receiving 5α-reductase inhibitors. BJU Int 2018;121(3):399-404. PMID: 28972698. DOI: 10.1111/bju.14041.

18. Tosoian J.J., Patel H.D., Mamawala M. et al. Longitudinal assessment of urinary PCA3 for predicting prostate cancer grade reclassification in favorable-risk men during active surveillance. Prostate Cancer Prostatic Dis 2017;20(3):339-42. PMID: 28417979. DOI: 10.1038/pcan.2017.16.

19. Zhou Y., Li Y., Li X.3, Jiang M. Urinary biomarker panel to improve accuracy in predicting prostate biopsy result in Chinese men with PSA 4-10 ng/mL. Biomed Res Int 2017:2512536. PMID: 28293631. DOI: 10.1155/2017/2512536.

20. Mao Z., Ji A., Yang K. et al. Diagnostic performance of PCA3 and hK2 in combination with serum PSA for prostate cancer. Medicine (Baltimore) 2018;97(42):e12806. PMID: 30334974. DOI: 10.1097/MD.0000000000012806.

21. Mikhaylenko D.S., Perepechin D.V., Grigoryeva M.V. et al. PCA3 and TMPRSS2:ERG genes expression in biopsies of benign prostate hyperplasia, intraepithelial neoplasia, and prostate cancer. Urologiia 2015;(5):46-50 (in Russ.). PMID: 26859937.

22. Apolikhin O.I., Sivkov A.V., Efremov G.D. et al. The first Russian experience of using PCA3 and TMPRSS2-ERG for prostate cancer diagnosis. Klinicheskaya i experimentalnaya urologiya = Clinical and experimental urology 2015;2:30-6 (in Russ.).

23. Li M., Zhou D., Zhang W. et al. Urine PCA3 mRNA level in diagnostic of prostate cancer. J Cancer Res Ther 2018;14(4):864-6. PMID: 29970667. DOI: 10.4103/jcrt.JCRT_734_17.

24. Wang T., Qu X., Jiang J. et al. Diagnostic significance of urinary long non-coding PCA3 RNA in prostate cancer. Oncotarget 2017;8(35):58577-86. PMID: 28938580. DOI: 10.18632/oncotarget.17272.

25. Pavlov K.A., Shkoporov A.N., Khokhlova E.V. et al. Development of a diagnostic test system for early non-invasive detection of prostate cancer based on PCA3 mRNA levels in urine sediment using quantitative reverse tanscription polymerase chain reaction (qRT-PCR). Vestn Ross Akad Med Nauk 2013;(5):45-51 (in Russ.). PMID: 24000667.

26. Toropovsky A.N., Nikitin A.G., Gordiev M.G. et al. Results of validation of the Prosta-Test kit designed for mRNA PCA3 detection using two-steps RT – real time PCR in clinical diagnostics of prostate cancer. Vestnik medicinskogo instituta REAVIZ = Journal of the REAVIZ medical institution 2018;1:126-36 (in Russ.).

27. Fenstermaker M., Mendhiratta N., Bjurlin M.A. et al. Risk stratification by urinary prostate cancer gene 3 testing before magnetic resonance imaging-ultrasound fusion-targeted prostate biopsy among men with no history of biopsy. Urology 2017;99:174-9. PMID: 27562202. DOI: 10.1016/j.urology.2016.08.022.

28. Cao L., Lee C.H., Ning J. et al. Combination of prostate cancer antigen 3 and prostate-specific antigen improves diagnostic accuracy in men at risk of prostate cancer. Arch Pathol Lab Med 2018;142(9):1106-12. PMID: 29547000. DOI: 10.5858/arpa.2017-0185-OA.

29. Yang Z., Yu L., Wang Z. PCA3 and TMPRSS2-ERG gene fusions as diagnostic biomarkers for prostate cancer. Chin J Cancer Res 2016;28(1):65-71. PMID: 27041928. DOI: 10.3978/j.issn.1000-9604.2016.01.05.

30. Ankerst D.P., Goros M., Tomlins S.A. et al. Incorporation of urinary prostate cancer antigen 3 and TMPRSS2:ERG into prostate cancer prevention trial risk calculator. Eur Urol Focus 2019;5(1):54-61. PMID: 29422418. DOI: 10.1016/j.euf.2018.01.010.

31. Newcomb L.F., Zheng Y., Faino A.V. et al. Performance of PCA3 and TMPRSS2:ERG urinary biomarkers in prediction of biopsy outcome in the Canary Prostate Active Surveillance Study (PASS). Prostate Cancer Prostatic Dis 2019;22(3):438-45. PMID: 30664734. DOI: 10.1038/s41391-018-0124-z.

32. Kornberg Z., Cooperberg M.R., Spratt D.E., Feng F.Y. Genomic biomarkers in prostate cancer. Transl Androl Urol 2018;7(3):459-71. PMID: 30050804. DOI: 10.21037/tau.2018.06.02.

33. Govers T.M., Caba L., Resnick M.J. Cost-effectiveness of urinary biomarker panel in prostate cancer risk assessment. J Urol 2018;200(6):1221-6. PMID: 30012363. DOI: 10.1016/j.juro.2018.07.034.

34. Haese A., Trooskens G., Steyaert S. et al. Multicenter optimization and validation of a 2-gene mRNA urine test for detection of clinically significant prostate cancer before initial prostate biopsy. J Urol 2019;202(2):256-63. PMID: 31026217. DOI: 10.1097/JU.0000000000000293.

35. Fujita K., Nonomura N. Urinary biomarkers of prostate cancer. Int J Urol 2018;25(9):770-9. PMID: 30129068. DOI: 10.1111/iju.13734.

36. Arriaga-Canon C., Rosa-Velazquez I.A., Gonzalez-Barrios R. et al. The use of long non-coding RNAs as prognostic biomarkers and therapeutic targets in prostate cancer. Oncotarget 2018;9(29):20872-90. PMID: 29755696. DOI: 10.18632/oncotarget.25038.

37. Loeb S. Biomarkers for prostate biopsy and risk stratification of newly diagnosed prostate cancer patients. Urol Pract 2017;4(4):315-21. PMID: 29104903. DOI: 10.1016/j.urpr.2016.08.001.

38. Shore N., Concepcion R., Saltzstein D. et al. Clinical utility of a biopsy-based cell cycle gene expression assay in localized prostate cancer. Curr Med Res Opin 2014;30(4):547-53. PMID: 24320750. DOI: 10.1185/03007995.2013.873398.

39. Crawford E.D., Scholz M.C., Kar A.J. et al. Cell cycle progression score and treatment decisions in prostate cancer: results from an ongoing registry. Curr Med Res Opin 2014;30(6):1025-31. PMID: 24576172. DOI: 10.1185/03007995.2014.899208.

40. Cuzick J., Stone S., Fisher G. et al. Validation of an RNA cell cycle progression score for predicting death from prostate cancer in a conservatively managed needle biopsy cohort. Br J Cancer 2015;113:382-9. PMID: 26103570. DOI: 10.1038/bjc.2015.223.

41. Cuzick J., Berney D.M., Fisher G. et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer 2012;106:1095-9. PMID: 22361632. DOI: 10.1038/bjc.2012.39.

42. Alford A.V., Brito J.M., Yadav K.K. et al. The use of biomarkers in prostate cancer screening and treatment. Rev Urol 2017;19(4):221-34. PMID: 29472826. DOI: 10.3909/riu0772.

43. Klein E.A., Haddad Z., Yousefi K. et al. Decipher genomic classifier measured on prostate biopsy predicts metastasis risk. Urology 2016;90:148-52. PMID: 26809071. DOI: 10.1016/j.urology.2016.01.012.

44. Marrone M., Potosky A.L., Penson D., Freedman A.N. A 22 gene-expression assay, Decipher® (GenomeDx Biosciences) to predict five-year risk of metastatic prostate cancer in men treated with radical prostatectomy. PLoS Curr 2015;7. PMID: 26664778. DOI: 10.1371/currents.eogt.761b81608129ed61b0b48d42c04f92a4.

45. Carneiro A., Priante Kayano P., Gomes Barbosa A.R. et al. Are localized prostate cancer biomarkers useful in the clinical practice? Tumour Biol 2018;40(9). PMID: 30204063. DOI: 10.1177/1010428318799255.

46. Knezevic D., Goddard A.D., Natraj N. et al. Analytical validation of the Oncotype DX prostate cancer assay – a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics 2013;14:690. PMID: 24103217. DOI: 10.1186/1471-2164-14-690.

47. Cullen J., Rosner I.L., Brand T.C. et al. A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol 2015;68(1):123-31. PMID: 25465337. DOI: 10.1016/j.eururo.2014.11.030.

48. Kornberg Z., Cowan J.E., Westphalen A.C. et al. Genomic prostate score, PI-RADS™ version 2 and progression in men with prostate cancer on active surveillance. J Urol 2019;201(2):300-7. PMID: 30179620. DOI: 10.1016/j.juro.2018.08.047.

49. UroVysion Bladder Cancer Kit. URL: https://www.molecular.abbott/sal/en-us/staticAssets/UroVysion-package-insert-R6---watermark.pdf.

50. Karnes R.J., Fernandez C.A., Shuber A.P. A noninvasive multianalyte urine-based diagnostic assay for urothelial cancer o f the bladder in the evaluation of hematuria. Mayo Clin Proc 2012;87(9):835-42. PMID: 22883743. DOI: 10.1016/j.mayocp.2012.04.013.

51. Roperch J.P., Grandchamp B., Desgrandchamps F. et al. Promoter hypermethylation of HS3ST2, SEPTIN9 and SLIT2 combined with FGFR3 mutations as a sensitive/specific urinary assay for diagnosis and surveillance in patients with low or high-risk non-muscle-invasive bladder cancer. BMC Cancer 2016;16:704. PMID: 27586786. DOI: 10.1186/s12885-016-2748-5.

52. Zhu F., Zhang Y., Shi L. et al. Gene mutation detection of urinary sediment cells for NMIBC early diagnose and prediction of NMIBC relapse after surgery. Medicine (Baltimore) 2019;98(32):e16451. PMID: 31393349. DOI: 10.1097/MD.0000000000016451.

53. Mikhailenko D.S., Nemtsova M.V. Point somatic mutations in bladder cancer: key carcinogenesis events, diagnostic markers and therapeutic targets. Urologiia. 2016;1:100-5. (in Russ.). PMID: 28247712.

54. Descotes F., Kara N., Decaussin-Petrucci M. et al. Non-invasive prediction of recurrence in bladder cancer by detecting somatic TERT promoter mutations in urine. Br J Cancer 2017;117(4):583-7. PMID: 28683471. DOI: 10.1038/bjc.2017.210.

55. Rodriguez Pena M.D., Springer S.U., Taheri D. et al. Performance of novel non-invasive urine assay UroSEEK in cohorts of equivocal urine cytology. Virchows Arch 2019 [Epub ahead of print]. PMID: 31482302. DOI: 10.1007/s00428-019-02654-1.

56. Cxbladder Kits. URL: https://www.cxbladder.com/.

57. Kavalieris L., Sullivan P., Frampton C. et al. Performance characteristics of a multigene urine biomarker test for monitoring for recurrent urothelial carcinoma in a multicenter study. J Urol 2017;197(6):1419-26. PMID: 27986532. DOI: 10.1016/j.juro.2016.12.010.

58. Davidson P.J., McGeoch G., Shand B. Inclusion of a molecular marker of bladder cancer in a clinical pathway for investigation of haematuria may reduce the need for cystoscopy. N Z Med J 2019;132(1497):55-64. PMID: 31220066.

59. Konety B., Shore N., Kader A.K. et al. Evaluation of Cxbladder and adjudication of atypical cytology and equivocal cystoscopy. Eur Urol 2019;76(2):238-43. PMID: 31103391. DOI: 10.1016/j.eururo.2019.04.035.


Review

For citations:


Mikhaylenko D.S., Sergienko S.A., Alekseev B.Ya., Kaprin A.D., Nemtsova M.V. Basic characteristics and features of the molecular genetic test systems designed for non-invasive diagnostics and prognosis of prostate cancer and bladder cancer. Cancer Urology. 2019;15(4):18-29. (In Russ.) https://doi.org/10.17650/1726-9776-2019-15-4-18-29

Views: 1259


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X