Preview

Cancer Urology

Advanced search

KIM-1 as a potential serological/urinological tumor-associated marker of renal cell carcinoma and chemotherapy nephrotoxicity

https://doi.org/10.17650/1726-9776-2019-15-3-132-142

Abstract

The last decades are characterized by an active search for highly sensitive and specific urinological and serological tumor-associated markers of renal cell carcinoma. This review analyses the results of studies of traditional serological tumor-associated markers and a potential new tumor-associated marker of renal cell carcinoma: kidney injury molecule-1, or KIM-1. The structure, sources and functions of KIM-1 in normal conditions and in damaged renal tubules, its potential role in carcinogenesis are described. The experience of using KIM-1 for specifying diagnosis of the most common histological types of renal cell carcinoma is analyzed. Data on KIM-1 expression in malignant tumors in other locations and non-oncological kidney disorders are presented. The role of KIM-1 in early diagnosis of nephrotoxic effect of antitumor drugs is described. The accumulated data is promising in regards to using KIM-1 in clinical oncology as a urinological and serological marker of renal cell carcinoma and chemotherapy nephrotoxicity.

About the Authors

M. P. Solokhina
National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284



N. S. Sergeeva
National Medical Research Radiological Center, Ministry of Health of Russia; N.I. Pirogov Russian National Research Medical University, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284, 

1 Ostrovityanova St., Moscow 117997



N. V. Marshutina
National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284



I. I. Alentov
National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284



K. Yu. Kanukoev
National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284



K. M. Nyushko
National Medical Research Radiological Center, Ministry of Health of Russia

3 2nd Botkinskiy Proezd, Moscow 125284



B. Ya. Alekseev
National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284



A. D. Kaprin
National Medical Research Radiological Center, Ministry of Health of Russia

3 2nd Botkinskiy Proezd, Moscow 125284



References

1. State of oncological care in Russia in 2017. Eds.: А.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMIRTS radiologii” Minzdrava Rossii, 2018. 236 p. (In Russ.).

2. Grankvist K., Ljungberg B., Rasmuson T. Evaluation of five glycoprotein tumour markers (CEA, CA-50, CA-19-9, CA-125, CA-15-3) for the prognosis of renal-cell carcinoma. Int J Cancer 1997;74(2):233–6. DOI: 10.1002/(SICI)10970215(19970422)74:2<233::AIDIJC17>3.0.CO;2-E.

3. Jacobsen J., Rasmuson T., Grankvist K., Ljungberg B. Vascular endothelial growth factor as prognostic factor in renal cell carcinoma. J Urol 2000;163(1):343–7. DOI: 10.1097/00005392-20000100000092.

4. Banyra O.B., Stroy A.A., Shulyak A.V. Tumor markers in kidney cancer diagnosing. Eksperimental’naya i klinicheskaya urologiya = Experimental and Clinical Urology 2011;4:72–8. (In Russ.).

5. Hotakainen K., Ljungberg B., Paju A. et al. The free β-subunit of human chorionic gonadotropin as a prognostic factor in renal cell carcinoma. Br J Cancer 2002;86(2):185–9. DOI: 10.1038/sj.bjc.6600050.

6. Stenman U., Paju A., Jakobsen A. Prognostic significance of tumor-associated trypsin inhibitor in renal cell carcinoma. Libro de Abstracts. 2001;125.

7. Zurita A.J., Jonasch E., Wang X. et al. A cytokine and angiogenic factor (CAF) analysis in plasma for selection of sorafenib therapy in patients with metastatic renal cell carcinoma. Ann Oncol 2012;23(1):46–52. DOI: 10.1093/annonc/mdr047.

8. Escudier B., Eisen T., Stadler W.M. et al. Sorafenib for treatment of renal cell carcinoma: final efficacy and safety results of the phase III treatment approaches in renal cancer global evaluation trial. J Clin Oncol 2009;27(20):3312–8. DOI: 10.1200/JCO.2008.19.5511.

9. Sergeeva N.S., Rusakov I.G., Marshutina N.V. et al. Examination of a serological tumor marker Tu M2-PK in patients with renal carcinoma. Rossiyskiy onkologicheskiy zhurnal = Russian Journal of Oncology 2005;3:30–2. (In Russ.).

10. Wechsel H.W., Petri E., Bichler K.H., Feil G. Marker for renal cell carcinoma (RCC): the dimeric form of pyruvate kinase type M2 (Tu M2-PK). Anticancer Res 1999;19(4A):2583–90.

11. Su Kim D., Choi Y.D., Moon M. et al. Composite Three-marker assay for early detection of kidney cancer. Cancer Epidemiol Biomarkers Prev 2013;22(3):390–8. DOI: 10.1158/1055-9965.EPI-12-1156.

12. Klyuchagina Yu.I., Sokolova Z.A., Baryshnikova M.A. Role of PD-1 receptor and its ligands PD-L1 and PD-L2 in cancer immunotherapy. Onkopediatriya = Oncopediatrics 2017;4(1):49–55. (In Russ.). DOI: 10.15690/опоо.у4И.1684.

13. Kushlinskiy N.E., Gershtein E.S., Morozov A.A. et al. Soluble ligand of the immune control point receptor (sPD-Ll) in serum in renal cell carcinoma. Byulleten’ eksperimental’noy biologii i meditsiny = Bulletin of experimental biology and medicine 2018; 166(9):325–9. (In Russ.).

14. Zhang W., Ni M., Su Y. et al. MicroRNAs in serum exosomes as potential biomarkers in clear-cell renal cell carcinoma. Eur Urol Focus 2018;4(3):412–9. DOI: 10.1016/j.euf.2016.09.007.

15. Scelo G., Muller D.C., Riboli E. et al. KIM1 as a blood-based marker for early detection of kidney cancer: a prospective nested casecontrol study. Clin Cancer Res 2018;24(22):5594–601. DOI: 10.1158/10780432.CCR-18-1496.

16. Han W.K., Alinani A., Wu C.L. et al. Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. J Am Soc Nephrol 2005;16(4):1126–34. DOI: 10.1681/ASN.2004070530.

17. Bailly V., Zhang Z., Meier W. et al. Shedding of kidney injury molecule-1, a putative adhesion protein involved in renal regeneration. J Biol Chem 2002;277(42):39739–48. DOI: 10.1074/jbc.M200562200.

18. Ichimura T., Bonventre J.V., Bailly V. et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem 1998;273(7):4135–42. DOI: 10.1074/jbc.273.7.4135.

19. Ismail O.Z., Zhang X., Bonventre J.V., Gunaratnam L. G protein α12 (Gα12) is a negative regulator of kidney injury molecule1-mediated efferocytosis. Am J Physiol Renal Physiol 2016;310(7):607–20. DOI: 10.1152/ajprenal.00169.2015.

20. Medić B., Rovcanin B., Vujovic K.S. et al. Evaluation of novel biomarkers of acute kidney injury: the possibilities and limitations. Curr Med Chem 2016;23(19):1981– 97. DOI: 10.2174/092986732366616021013025.

21. Yin C., Wang N. Kidney injury molecule-1 in kidney disease. Ren Fail 2016;38(10):1567– 73. DOI: 10.1080/0886022X.2016.1193816.

22. Tami C., Silberstein E., Manangeeswaran M. et al. Immunoglobulin A (IgA) is a natural ligand of hepatitis A virus cellular receptor 1 (HAVCR-1), and the association of IgA with HAVCR-1 enhances virus-receptor interactions. J Virol 2007;81(7):3437–46. DOI: 10.1128/JVI.01585-06.

23. Amin R.P., Vickers A.E., Sistare F. et al. Identification of putative gene based markers of renal toxicity. Environ Health Perspect 2004;112(4):465–79. DOI: 10.1289/ehp.6683.

24. Lim A.I., Tang S.C., Lai K.N., Leung J.C. Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells? J Cell Physiol 2013;228(5):917–24. DOI: 10.1002/jcp.24267.

25. Ichimura T., Brooks C.R., Bonventre J.V. Kim-1/Tim-1 and immune cells: shifting sands. Kidney Int 2012;81(9):809–11. DOI: 10.1038/ki.2012.11.

26. Van Timmeren M.M., van den Heuvel M.C., Bailly V. et al. Tubular kidney injury molecule1 (KIM-1) in human renal disease. J Pathol 2007;212(2):209–17. DOI: 10.1002/path.2175.

27. Kramer A.B., van Timmeren M.M., Schuurs T.A. et al. Reduction of proteinuria in adriamycininduced nephropathy is associated with reduction of renal kidney injury molecule (Kim-1) over time. Am J Physiol Renal Physiol 2009;296(5):1136–45. DOI: 10.1152/ajprenal.00541.2007.

28. Kuehn E.W., Park K.M., Somlo S., Bonventre J.V. Kidney injury molecule-1 expression in murine polycystic kidney disease. Am J Physiol Renal Physiol 2002;283(6):1326–36. DOI: 10.1152/ajprenal.00166.2002.

29. Ichimura T., Asseldonk E.J., Humphreys B.D. et al. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest 2008;118(5):1657–68. DOI: 10.1172/JCI34487.

30. Silberstein E., Dveksler G., Kaplan G.G. Neutralization of hepatitis A virus (HAV) by an immunoadhesin containing the cysteinerich region of HAV cellular receptor-1. J Virol 2001;75(2):717–25. DOI: 10.1128/JVI.75.2.717-725.2001.

31. Rodriguez-Manzanet R., DeKruyff R., Kuchroo V.K., Umetsu D.T. The costimulatory role of TIM molecules. Immunol Rev 2009;229(1):259–70. DOI: 10.1111/j.1600-065X.2009.00772.x.

32. Meyers J.H., Sabatos C.A., Chakravarti S., Kuchroo V.K. The TIM gene family regulates autoimmune and allergic diseases. Trends Mol Med 2005;11(8):362–9. DOI: 10.1016/j.molmed.2005.06.008.

33. Gordon S. Pattern recognition receptors: doubling up for the innate immune response. Cell 2002;111(7):927–30. DOI: 10.1016/S0092-8674(02)01201-1.

34. Cohen H.T., Francis J., Mcgovern F.J. Renal-Cell Carcinoma. N Engl J Med 2005;353(23):2477–90. DOI: 10.1056/NEJMra043172.

35. Vilà M.R., Kaplan G.G., Feigelstock D. et al. Hepatitis A virus receptor blocks cell differentiation and is overexpressed in clear cell renal cell carcinoma. Kidney Int 2004;65(5):1761–73. DOI: 10.1111/j.1523-1755.2004.00601.x.

36. Kaplan G., Totsuka A., Thompson P. et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J 1996;15(16):4282–96. DOI: 10.1002/j.1460-2075.1996.tb00803.x.

37. Cuadros T., Trilla E., Sarró E. et al. HAVCR/ KIM-1 activates the IL-6/STAT-3 pathway in clear cell renal cell carcinoma and determines tumor progression and patient outcome. Cancer Res 2014;74(5):1416–28. DOI: 10.1158/0008-5472.CAN-13-1671.

38. Jung J.E., Lee H.G., Cho I.H. et al. STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J 2005;19(10):1296–8. DOI: 10.1096/fj.043099fje.

39. Martin T.A. The role of tight junctions in cancer metastasis. Semin Cell Dev Biol 2014;36:224–31. DOI: 10.1016/j.semcdb.2014.09.008.

40. Martin T.A., Harrison G.M., Mason M.D., Jiang W.G. HAVCR-1 reduces the integrity of human endothelial tight junctions. Anticancer Res 2011;31(2):467–73.

41. Dong Y.C., Wu B., Wang J.D. et al. Expression and clinical significance of kidney injury molecule-1 in renal epithelial neoplasms. Zhonghua Bing Li Xue Za Zhi 2010;39(1):35–9.

42. Mijuskovic M., Stanojevic I., Milovic N. et al. Tissue and urinary KIM-1 relate to tumor characteristics in patients with clear renal cell carcinoma. Int Urol Nephrol 2018;50(1):63–70. DOI: 10.1007/s11255017-1724-6.

43. Shalabi A., Abassi Z., Awad H. et al. Urinary NGAL and KIM-1: potential association with histopathologic features in patients with renal cell carcinoma. World J Urol 2013;31(6):1541–5. DOI: 10.1007/s00345013-1043-1.

44. Lin F., Zhang P.L., Yang X.J. et al. Human kidney injury molecule-1 (hKIM-1): a useful immunohistochemical marker for diagnosing renal cell carcinoma and ovarian clear cell carcinoma. Am J Surg Pathol 2007;31(3):371–81. DOI: 10.1097/01.pas.0000213353.95508.67.

45. Dent J., Hall G.D., Wilkinson N. et al. Cytogenetic alterations in ovarian clear cell carcinoma detected by comparative genomic hybridization. Br J Cancer 2003;88(10):1578–83. DOI: 10.1038/sj.bjc.6600896.

46. Sangoi A.R., McKenney J.K., Brooks J.D. et al. Evaluation of putative renal cell carcinoma markers PAX-2, PAX-8, and hKIM-1 in germ cell tumors: a tissue microarray study of 100 cases. Appl Immunohistochem Mol Morphol 2012;20(5):451–3. DOI: 10.1097/PAI.0b013e31824bb404.

47. Liu L., Song Z., Zhao Y. et al. HAVCR-1 expression might be a novel prognostic factor for gastric cancer. PLoS One 2018;13(11):0206423. DOI: 10.1371/journal.pone.0206423.

48. Telford E.J., Jiang W.G., Martin T.A. HAVCR-1 involvement in cancer progression. Histol Histopathol 2017;32(2):121–8. DOI: 10.14670/HH-11-817.

49. Wang Y., Martin T.A., Jiang W.G. HAVCR-1 expression in human colorectal cancer and its effects on colorectal cancer cells in vitro. Anticancer Res 2013;33(1):207–14.

50. Seibert F.S., Sitz M., Passfall J. et al. Prognostic value of urinary calprotectin, NGAL and KIM-1 in chronic kidney disease. Kidney Blood Press Res 2018;43(4):1255–62. DOI: 10.1159/000492407.

51. Zhao X., Zhang Y., Li L. et al. Glomerular expression of kidney injury molecule-1 and podocytopenia in diabetic glomerulopathy. Am J Nephrol 2011;34(3):268–80. DOI: 10.1159/000330187.

52. De Carvalho J.A., Tatsch E., Hausen B.S. et al. Urinary kidney injury molecule-1 and neutrophil gelatinase-associated lipocalin as indicators of tubular damage in normoalbuminuric patients with type 2 diabetes. Clin Biochem 2016;49(3):232–6. DOI: 10.1016/j.clinbiochem.2015.10.016.

53. Waikar S.S., Sabbisetti V., Ärnlöv J. et al. Relationship of proximal tubular injury to chronic kidney disease as assessed by urinary kidney injury molecule-1 in five cohort studies. Nephrol Dial Transplant 2016;31(9):1460–70. DOI: 10.1093/ndt/gfw203.

54. Sun I.O., Santelli A., Abumoawad A. et al. Loss of renal peritubular capillaries in hypertensive patients is detectable by urinary endothelial microparticle levels. Hypertension 2018;72(5):1180–8. DOI: 10.1161/HYPERTENSIONAHA.118.11766.

55. Dallatu M.K., Nwokocha E., Agu N. et al. The role of hypoxia-inducible factor/prolyl hydroxylation pathway in deoxycorticosterone acetate/salt hypertension in the rat. J Hypertens (Los Angel) 2014;3(6). DOI: 10.4172/2167-1095.1000184.

56. Kandhare A.D., Patil M.V., Bodhankar S.L. L-Arginine attenuates the ethylene glycol induced urolithiasis in ininephrectomized hypertensive rats: role of KIM-1, NGAL, and NOs. Ren Fail 2015;37(4):709–21. DOI: 10.3109/0886022X.2015.1011967.

57. Lacquaniti A., Donato V., Pintaudi B. et al. “Normoalbuminuric” diabetic nephropathy: tubular damage and NGAL. Acta Diabetol 2013;50(6):935–42. DOI: 10.1007/s00592-013-0485-7.

58. Humphreys B.D., Xu F., Sabbisetti V. et al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J Clin Invest 2013;123(9):4023–35. DOI: 10.1172/JCI45361.

59. Chawla L.S., Eggers P.W., Star R.A., Kimmel P.L. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 2014;371(1):58–66. DOI: 10.1056/NEJMra1214243.

60. Dubin R.F., Judd S., Scherzer R. et al. Urinary tubular injury biomarkers are associated with ESRD and death in the REGARDS study. Kidney Int Rep 2018;3(5):1183–92. DOI: 10.1016/j.ekir.2018.05.013.

61. Brovko M.Yu., Pulin A.A., Kustova T.Yu. et al. Significance of the determination of urinary excretion of kidney injury molecule-1 (KIM-1) in the assessment of the activity and prognosis of chronic glomerulonephritis. Terapevticheskiy arkhiv = Therapeutic Archive 2016;88(6):51–7. (In Russ.). DOI: 10.17116/terarkh201688651-57.

62. Lieberthal J.G., Cuthbertson D., Carette S. et al. Urinary biomarkers in relapsing antineutrophil cytoplasmic antibody-associated vasculitis. J Rheumatol 2013;40(5):674–83. DOI: 10.3899/jrheum.120879.

63. Xu P.C., Zhang J.J., Chen M. et al. Urinary kidney injury molecule-1 in patients with IgA nephropathy is closely associated with disease severity. Nephrol Dial Transplant 2011;26(10):3229–36. DOI: 10.1093/ndt/gfr023.

64. Fahmy N., Sener A., Sabbisetti V. et al. Urinary expression of novel tissue markers of kidney injury after ureteroscopy, shockwave lithotripsy, and in normal healthy controls. J Endourol 2013;27(12):1455–62. DOI: 10.1089/end.2013.0188.

65. Urbschat A., Gauer S., Paulus P. et al. Serum and urinary NGAL but not KIM-1 raises in human postrenal AKI. Eur J Clin Invest 2014;44(7):652–9. DOI: 10.1111/eci.12283.

66. Arany I., Safirstein R.L. Cisplatin nephrotoxicity. Semin Nephrol 2003;23(5):460–4.

67. Horie S., Oya M., Nangaku M. et al. Guidelines for treatment of renal injury during cancer chemotherapy 2016. Clin Exp Nephrol 2018;22(1):210–44. DOI: 10.1007/s10157017-1448-z.

68. Hostetter T.H., Olson J.L., Rennke H.G. et al. Hyperfiltration in remnant nephrons: a potentially adverse response to renal ablation. J Am Soc Nephrol 2001;12(6):1315–25. DOI: 10.1152/ajprenal.1981.241.1.F85.

69. Dieterle F., Sistare F., Goodsaid F. et al. Renal biomarker qualification submission: A dialog between the FDA–EMEA and predictive safety testing consortium. Nat Biotechnol 2010;28(5):455–62. DOI: 10.1038/nbt.1625.

70. Sahni V., Choudhury D., Ahmed Z. Chemotherapyassociated renal dysfunction. Nat Rev Nephrol 2009;5(8):450–62. DOI: 10.1038/nrneph.2009.97.

71. Mohamad M.A., Mohamad R.A., Fatemeh A., Mohamad R.S. Histological study of toxic effects of cisplatin single dose injection on rat kidney. Gene Cell Tissue 2014;1:21536. DOI: 10.17795/gct-21536.

72. Kokura K., Kuromi Y., Endo T. et al. A kidney injury molecule-1 (Kim-1) gene reporter in a mouse artificial chromosome: the responsiveness to cisplatin toxicity in immortalized mouse kidney S3 cells. J Gene Med 2016;18(10):273–81. DOI: 10.1002/jgm.2925.

73. Park E.J., Kwon H.K., Choi Y.M. et al. Doxorubicin induces cytotoxicity through upregulation of pERK-dependent ATF3. PLoS One 2012;7(9):44990. DOI: 10.1371/journal.pone.0044990.

74. Tekce B.K., Uyeturk U., Tekce H. et al. Does the kidney injury molecule-1 predict cisplatin-induced kidney injury in early stage? Ann Clin Biochem 2015;52(Pt 1):88– 94. DOI: 10.1177/0004563214528312.

75. Shinke H., Masuda S., Togashi Y. et al. Urinary kidney injury molecule-1 and monocyte chemotactic protein-1 are noninvasive biomarkers of cisplatin-induced nephrotoxicity in lung cancer patients. Cancer Chemother Pharmacol 2015;76(5):989–96. DOI: 10.1007/s00280-015-2880-y.

76. Abdelsalam M., Elmorsy E., Abdelwahab H. et al. Urinary biomarkers for early detection of platinum based drugs induced nephrotoxicity. BMC Nephrol 2018;19(1):219. DOI: 10.1186/s12882-018-1022-2.

77. Carvalho Pedrosa D., Macedo de Oliveira Neves F., Cavalcante Meneses G. et al. Urinary KIM-1 in children undergoing nephrotoxic antineoplastic treatment: a prospective cohort study. Pediatr Nephrol 2015;30(12):2207–13. DOI: 10.1007/s00467-015-3178-3.

78. Sinha V., Vence L.M., Salahudeen A.K. Urinary tubular protein-based biomarkers in the rodent model of cisplatin nephrotoxicity: a comparative analysis of serum creatinine, renal histology, and urinary KIM-1, NGAL, and NAG in the initiation, maintenance, and recovery phases of acute kidney injury. J Investig Med 2013;61(3):564–8. DOI: 10.2310/JIM.0b013e31828233a8.

79. Pianta T.J., Succar L., Davidson T. et al. Monitoring treatment of acute kidney injury with damage biomarkers. Toxicol Lett 2017;268:63–70. DOI: 10.1016/j.toxlet.2017.01.001.


Review

For citations:


Solokhina M.P., Sergeeva N.S., Marshutina N.V., Alentov I.I., Kanukoev K.Yu., Nyushko K.M., Alekseev B.Ya., Kaprin A.D. KIM-1 as a potential serological/urinological tumor-associated marker of renal cell carcinoma and chemotherapy nephrotoxicity. Cancer Urology. 2019;15(3):132-142. (In Russ.) https://doi.org/10.17650/1726-9776-2019-15-3-132-142

Views: 1843


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X