Prognostic role of PBRM1 marker expression in clear-cell renal-cell carcinoma
https://doi.org/10.17650/1726-9776-2019-15-1-23-31
Abstract
Background. Clear-cell renal-cell carcinoma (CCRCC) is the most common histological type of cancer of this localization. Changes in 16 genes were identified as significant in carcinogenesis of CCRCC. After VHL suppressor gene, PBRM1 gene is the second by frequency of genetic abnormalities in CCRCC and it is mutated in 40—50 % cases of CCRCC.
The study objectiveis to analyze the effect of abnormalities in PBRM1 protein expression on survival of patients with CCRCC.
Materials and methods. The study included 137patients with newly diagnosed and histologically confirmed CCRCC. For all study participant, detailed medical history and questionnaire data were acquired. Prior to treatment, blood samples and tumor tissue removed during surgery were obtainedfrom all patients. All patients are annually followed up for current information on their life status, disease dynamics, treatment. Minimalfollow-up time is 22 months, maximal is 128 months, mean is 61.8 months, median is 48 months. Immunohistochemical (IHC) testing of PBRM1 expression was performed using standard technique with polyclonal rabbit antibodies PB1[N1N2] N-term (GeneTex 100781) with 1:50 dilution, DAB staining. Normally, protein product of the wild type PBRM1 gene is functioning and can be detected in the nucleus. Absence of nuclear expression of PBRM1 points to genetic or epigenetic abnormalities.
Results.Renal cancer-specific survival is significantly lower in patients without expression of the PRBM1 protein in tumor cells. The longest 5- (84 %) and 10-year (84 %) survival was observed in patients with diffuse nuclear expression of the PBRM1 protein. Difference in survival of these patients compared to patients without PRBM1 protein expression is statistically significant (p = 0.004). We have performed an analysis of the association between survival of patients with CCRCC andfocal nuclear PBRM1 expression. In these patients, survival is lower than in patients with diffuse expression but higher than in patients without nuclear expression of PBRM1 (p = 0.02). Cytoplasmic expression of PBRM1 doesn’t affect survival.
Conclusion.The obtained results point to prognostic value of PBRM1 gene activity which is abnormal in almost half of all CCRCC cases. IHC testing is an appropriate, reliable and affordable method for determination of PBRM1 protein expression and therefore can be used in practice. Favorable course and prognosis in patients with stage I—II CCRCC and preserved nuclear expression of the PBRM1 protein should be noted: 5-year survival for these patients is 100 %. This observation is crucial for making decisions on treatment of these patients.
About the Authors
D. G. ZaridzeRussian Federation
24 Kashirskoe Shosse, Moscow 115478
Competing Interests: no conflict of interest
N. N. Mazurenko
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Competing Interests: no conflict of interest
S. D. Bezhanova
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Competing Interests: no conflict of interest
D. M. Maksimovich
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Competing Interests: no conflict of interest
O. V. Shangina
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Competing Interests: no conflict of interest
V. A. Draudin-Krylenko
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Competing Interests: no conflict of interest
A. F. Mukeria
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Competing Interests: no conflict of interest
V. B. Matveev
Russian Federation
24 Kashirskoe Shosse, Moscow 115478
Competing Interests: no conflict of interest
References
1. Siegel R.L., Miller K.D., Jemal A. Cancer Statistics. CA Cancer J. Clin 2016;66(1):7— 30. DOI: 10.3322/caac.21332. PMID: 26742998.
2. Scelo G., Larose T.L. Epidemiology and Risk Factors for Kidney Cancer. J Clin Oncol 2018;29:JCO2018791905. DOI: 10.1200/JCO.2018.79.1905. PMID: 30372394.
3. Malignant tumors in Russia in 2017 (morbidity and mortality). Eds.: A.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow: MNIOI im. P.A. Gertsena - filial FGBU “NMIRTS” Minzdrava Rossii, 2018. 250 p. (In Russ.).
4. Zaridze D.G., Maksimovich D.M. Prevention ofmalignant neoplasms. Uspekhi molekulyarnoy onkologii = Advances in molecular oncology 2017;4(2):8—25. (In Russ.).
5. Zaridze D.G., Mukeriya A.F., Shan’gina O.V., Matveev V.B. Molecular epidemiology of renal cancer. Oncourologiya = Cancer Urology 2018;14(3):107—19. (In Russ.).
6. Moch H., Cubilla A.L., Humphrey P.A. et al. The 2016 WHO classification of tumours of the urinary system and male genital organs-part A: renal, penile, and testicular tumours. Eur Urol 2016;70(1):93—105. DOI: 10.1016/j.eururo.2016.02.029. PMID: 26935559.
7. Linehan W.M., Walther M.M., Zbar B. The genetic basis of cancer of the kidney. J Urol 2003;170(6 Pt 1):2163—72. DOI: 10.1097/01.ju.0000096060.92397.ed. PMID: 14634372.
8. Varela I., Tarpey P., Raine K. et al. Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 2011;469(7331):539—42. DOI: 10.1038/nature09639 PMID: 21248752.
9. Scelo G., Riazalhosseni Y., Greger L. et al. Variation in genomic landscape of clear cell renal cell carcinoma across Europe. Nat Commun 2014;29(5):5135. DOI: 10.1038/ncomms6135. PMID: 25351205.
10. Liao L., Testa J.R., Yang Н. The roles of chromatin-remodelers and epigenetic modifiers in kidney cancer. Cancer Genet 2015;208(5):206—14. DOI: 10.1016/j.cancergen.2015.02.008. PMID: 25873528.
11. Nargund A.M., Pham C.G., Dong Y. et al. The SWI/SNF Protein PBRM1 restrains VHL-loss-driven clear cell renal cell carcinoma. Cell Rep 2017;18(12):2893—906. DOI: 10.1016/j.celrep.2017.02.074. PMID: 28329682.
12. Hakimi A.A., Chen Y.B., Wren J. et al. Clinical and pathologic impact of select chromatin-modulating tumor suppressors in clear cell renal cell carcinoma. Eur Urol 2013;63(5):848—54. DOI: 10.1016/j.eururo.2012.09.005. PMID: 23036577.
13. Sato Y., Yoshizato T., Shiraishi Y. et al. Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet2013;45(8):860—7. DOI: 10.1038/ng.2699. PMID: 23797736.
14. Kapur P., Pena-Llopis S., Christie A. Effects on survival of BAP1 and PBRM1 mutations in sporadic clear-cell renal-cell carcinoma: a retrospective analysis with independent validation. Lancet Oncol 2013;14(2):159—67. DOI: 10.1016/S14702045(12)70584-3. PMID: 23333114.
15. Pawlowski R., Muhl S.M., Sulser T. et al. Loss of PBRM1 expression is associated with renal cell carcinoma progression. Int J Cancer 2013;132(2):E11—7. DOI: 10.1002/ijc.27822. PMID: 22949125.
16. da Costa W.H., Rezende M., Carneiro F.C. et al. Polybromo-1 (PBRM1), a SWI/SNF complex subunit is a prognostic marker in clear cell renal cell carcinoma. BJU Int 2014;113(5b):E157—63. DOI: 10.1111/bju.12426. PMID: 24053427.
17. Nam S.J., Lee C., Park J.H., Moon K.C. Decreased PBRM1 expression predicts unfavorable prognosis in patients with clear cell renal cell carcinoma. Urol Oncol 2015;33(8):340.e9—16. DOI: 10.1016/j.urolonc.2015.01.010. PMID: 26003625.
18. Piva F., Giulietti M., Occhipinti G. et al. Computational analysis of the mutations in BAP1, PBRM1 and SETD2 genes reveals the impaired molecular processes in renal cell carcinoma. Oncotarget 2015;6(31):32161—8. DOI: 10.18632/oncotarget.5147. PMID: 26452128.
19. Pena-Llopis S., Vega-Rubin-de-Celis S., Liao A. et al. BAP1 loss defines a new class of renal cell carcinoma. Nat Genet 2012;44(7):751 —9. DOI: 10.1038/ng.2323. PMID: 22683710.
20. Joseph R.W., Kapur P., Serie D.J. et al. Clear cell renal cell carcinoma subtypes identified by BAP1 and PBRM1 expression. J Urol 2016;195(1):180—7. DOI: 10.1016/j.juro.2015.07.113. PMID: 26300218.
21. Kaplan E.L., Meier P. Nonparametric estimation from incomplete observations. J Amer Stat Assoc 1958;53:457-81.
22. Stata Statistical Software. Release 14.0. College Station, TX: Stata Corporation.
23. Ho T.H., Kapur P., Joseph R.W. et al. Loss of PBRM1 and BAP1 expression is less common in non-clear cell renal cell carcinoma than in clear cell renal cell carcinoma. Urol Oncol 2015;33(1):23.e9-14. DOI: 10.1016/j.urolonc.2014.10.014. PMID: 25465300.
24. Eckel-Passow J.E., Serie D.J., Cheville J.C. et al. BAP1 and PBRM1 in metastatic clear cell renal cell carcinoma: tumor heterogeneity and concordance with paired primary tumor. BMC Urol 2017;17(1):19. DOI: 1186/s12894-017-0209-310. PMID: 28327121.
25. Casuscelli J., Vano Y., Fridman W.H., Hsieh J.J. Molecular classification of renal cell carcinoma and its implication in future clinical practice. Kidney Cancer 2017;1(1):3—13. DOI: 10.3233/KCA-170008. PMID: 30334000.
26. Gerlinger M., Horswell S., Larkin J. et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 2014;46(3):225—33. DOI: 10.1038/ng.2891. PMID: 24487277.
27. Sankin A., Hakimi A.A., Mikkilineni N. et al. The impact of genetic heterogeneity on biomarker development in kidney cancer assessed by multiregional sampling. Cancer Med 2014;3(6):1485—92. DOI: 10.1002/cam4.293. PMID: 25124064.
28. Jiang W., Dulaimi E., Devarajan K. et al. Intratumoral heterogeneity analysis reveals hidden associations between protein expression losses and patient survival in clear cell renal cell carcinoma. Oncotarget 2017;8(23):37423—34. PMID: 28445125.
Review
For citations:
Zaridze D.G., Mazurenko N.N., Bezhanova S.D., Maksimovich D.M., Shangina O.V., Draudin-Krylenko V.A., Mukeria A.F., Matveev V.B. Prognostic role of PBRM1 marker expression in clear-cell renal-cell carcinoma. Cancer Urology. 2019;15(1):23-31. (In Russ.) https://doi.org/10.17650/1726-9776-2019-15-1-23-31