The role of molecular genetic alterations in sensitivity of the adjuvant intravesical therapy for non-muscle invasive bladder cancer
https://doi.org/10.17650/1726-9776-2018-14-4-124-138
Abstract
Bladder cancer (BC) is represented by non-muscle-invasive forms at the stage Ta, T1, CIS (NMBC) in 75 % of cases. The gold standard of treatment of NMBC patients is transurethral resection, but its implementation does not always allow the patient to be relieved of the recurrence of the disease. In this regard, patients with a low risk of progression after transurethral resection are administered by intravesical chemotherapy, with high risk (T1G2/3) – using instillation with BCG (Bacillus Calmette–Guerin) vaccine. Searching of NMBC markers for laboratory diagnostics, which would help to determine sensitivity or resistance to the planned type of adjuvant therapy remains an actual problem. The data published mainly in the last 5–7 years about genetic predictors of the response to adjuvant chemotherapy and, to a greater extent, immunotherapy with BCG vaccine, are reviewed in this work. Allele combinations in the genes involved in immune response, xenobiotic biotransformation and other loci that are associated with the response to the adjuvant NMBC therapy in meta-analyzes are systematized. Also, expression profiles of mRNA, microRNA and proteins, as well as panels of methylated loci associated with the effectiveness of chemotherapy and immunotherapy of NMBC are considered. It was demonstrated that the somatic mutations sequencing in the primary tumor and the total mutational load using high-throughput sequencing technologies (NGS) identified a number of potential prognostic markers. Perhaps, the mutational load will be more widely used as a highly informative predictor of immunotherapeutic effect in BC: BCG therapy of NMBC and BC targeted therapy using the inhibitors of immune control points, after the standardization of the analysis. This review is intended to oncologists, geneticists, molecular biologists, urologists, pathologists and other specialists working in the field of molecular genetics in oncological urology.
About the Authors
D. S. MikhaylenkoRussian Federation
Build. 1, 51 3rd Parkovaya St., Moscow 105425; Build. 2, 8 Trubetskaya St., Moscow 119991; 1 Moskvorechye St., Moscow 115522.
Competing Interests: The authors declare no conflict of interest.
S. A. Sergienko
Russian Federation
Build. 1, 51 3rd Parkovaya St., Moscow 105425.
Competing Interests: The authors declare no conflict of interest.
I. N. Zaborsky
Russian Federation
10 Marshala Zhukova St., Obninsk 249031.
Competing Interests: The authors declare no conflict of interest.
K. N. Saflullin
Russian Federation
10 Marshala Zhukova St., Obninsk 249031.
Competing Interests: The authors declare no conflict of interest.
S. A. Serebryany
Russian Federation
Build. 1, 51 3rd Parkovaya St., Moscow 105425.
Competing Interests: The authors declare no conflict of interest.
N. Yu. Safronova
Russian Federation
Build. 1, 51 3rd Parkovaya St., Moscow 105425.
Competing Interests: The authors declare no conflict of interest.
M. V. Nemtsova
Russian Federation
Build. 2, 8 Trubetskaya St., Moscow 119991; 1 Moskvorechye St., Moscow 115522.
Competing Interests: The authors declare no conflict of interest.
A. D. Kaprin
Russian Federation
Build. 1, 51 3rd Parkovaya St., Moscow 105425.
Competing Interests: The authors declare no conflict of interest.
B. Ya. Alekseev
Russian Federation
Build. 1, 51 3rd Parkovaya St., Moscow 105425.
Competing Interests: The authors declare no conflict of interest.
References
1. Malignant tumors in Russia in 2016 (morbidity and mortality). Eds.: A.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow: MNIOI im. P.A. Gertsena - filial FGBU “NMIRTS” Minzdrava Rossii, 2018. 250 p. (In Russ.).
2. Ferlay J., Soerjomataram I. Dikshit R. et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Can-cer 2015;136(5):E359—86. DOI: 10.1002/ijc.29210. PMID: 25220842.
3. Comperat E., Larre S., Roupret M. et al. Clinicopathological characteristics of urothelial bladder cancer in patients less than 40 years old. Virchows Arch 2015;466(5):589—94. DOI: 10.1007/s00428-015-1739-2. PMID: 25697540.
4. Freedman N.D., Silverman D.T., Hollenbeck A.R. et al. Association between smoking and risk of bladder cancer among men and women. JAMA 2011;306(7):737— 45. DOI: 10.1001/jama.2011.1142. PMID: 21846855.
5. Burger M., Catto J.W., Dalbagni G. et al. Epidemiology and risk factors of urothelial bladder cancer. Eur Urol 2013;63(2): 234—41. DOI: 10.1016/j.eururo.2012.07.033. PMID: 22877502.
6. Colt J.S., Friesen M.C., Stewart P.A. et al. A case-control study of occupational exposure to metalworking fluids and bladder cancer risk among men. Occup Environ Med 2014;71(10):667—74. DOI: 10.1136/oemed-2013-102056. PMID: 25201311.
7. Sylvester R.J., Oosterlinck W., Holmang S. et al. Systematic review and individual patient data meta-analysis of randomized trials comparing a single immediate instillation of chemotherapy after transurethral resection with transurethral resection alone in patients with stage pTa—pT1 urothelial carcinoma of the bladder: which patients benefit from the instillation? Eur Urol 2016;69(2):231—44. DOI: 10.1016/j.eururo.2015.05.050. PMID: 26091833.
8. Abern M.R., Owusu R.A., Anderson M.R. et al. Perioperative intravesical chemotherapy in non-muscle-invasive bladder cancer: a systematic review and meta-analysis. J Natl Compr Canc Netw 2013;11(4): 477—84. PMID: 23584348.
9. Huncharek M., McGarry R., Kupelnick B. Impact of intravesical chemotherapy on recurrence rate of recurrent superficial transitional cell carcinoma of the bladder: results of a meta-analysis. Anticancer Res 2001;21(1B):765—9. PMID: 11299841.
10. Kaasinen E., Rintala E., Hellstrom P. et al. Factors explaining recurrence in patients undergoing chemoimmunotherapy regimens for frequently recurring superficial bladder carcinoma. Eur Urol 2002;42(2):167—74. PMID: 12160589.
11. Morales A., Eidinger D., Bruce A.W. Intracavitary Bacillus Calmette—Guerin in the treatment of superficial bladder tumors. J Urol 2017;197(2S):S142— 5. DOI: 10.1016/j.juro.2016.10.101. PMID: 28012770.
12. Fuge O., Vasdev N., Allchorne P., Green J.S. Immunotherapy for bladder cancer. Res Rep Urol 2015;7:65—79. DOI: 10.2147/RRU.S63447. PMID: 26000263.
13. Malmstrom P.U., Sylvester R.J., Crawford D.E. et al. An individual patient data metaanalysis of the long-term outcome of randomised studies comparing intravesical mitomycin C versus bacillus Calmette—Guerin for non-muscle-invasive bladder cancer. Eur Urol 2009;56(2):247—56. DOI: 10.1016/j.eururo.2009.04.038. PMID: 19409692.
14. Bohle A., Bock P.R. Intravesical bacille Calmette—Guerin versus mitomycin C in superficial bladder cancer: formal metaanalysis of comparative studies on tumor progression. Urology 2004;63(4):682—6. PMID: 15072879.
15. Gladkov O.A., Matveev V.B., Mitin T. et al. Practical recommendations for the drug treatment of bladder cancer. Malignant tumors: Practical recommendations RUSSCO 2017;7:411 —20. (In Russ.).
16. Bernikov A.N., Volkova M.I., Koryakin OB et al.. Bladder cancer: clinical guidelines. Scientific Council of the Ministry of Health of Russia, 2017, 57 p. (In Russ.).
17. Brausi M., Oddens J., Sylvester R. et al. Side effects of Bacillus Calmette—Guerin (BCG) in the treatment of intermediate- and high-risk Ta, T1 papillary carcinoma of the bladder: results of the EORTC geni-to-urinary cancers group randomised phase 3 study comparing one-third dose with full dose and 1 year with 3 years of maintenance BCG. Eur Urol 2014;65(1):69—76. DOI: 10.1016/j.eururo.2013.07.021. PMID: 23910233.
18. Redelman-Sidi G., Glickman M.S., Bochner B.H. The mechanism of action of BCG therapy for bladder cancer — a current perspective. Nat Rev Urol 2014;11(3):153—62. DOI: 10.1038/nrurol.2014.15. PMID: 24492433.
19. Pettenati C., Ingersoll M.A. Mechanisms of BCG immunotherapy and its outlook for bladder cancer. Nat Rev Urol 2018;15(10):615—25. DOI: 10.1038/s41585-018-0055-4. PMID: 29991725.
20. Lelyavin K.B., Dvornichenko V.V. Intravesical immunotherapy with vaccine BCG in complex treatment of non-muscle-invasive bladder cancer. Sibirskiy meditsinskiy zhurnal = Siberian Medical Journal 2010;(4):5—8. (In Russ.).
21. Saluja M., Gilling P. Intravesical bacillus Calmette—Guerin instillation in non-muscle-invasive bladder cancer: a review. Int J Urol 2018;25(1):18—24. DOI: 10.nn/iju.13410. PMID: 28741703.
22. Maruf M., Brancato S.J., Agarwal P.K. Nonmuscle invasive bladder cancer: a primer on immunotherapy. Cancer Biol Med 2016;13(2):194—205. DOI: 10.20892/j.issn.2095-3941.2016.0020. PMID: 27458527.
23. Wu C., Zhou X., Miao C. et al. Assessing the feasibility of replacing standard-dose Bacillus Calmette—Guerin immunotherapy with other intravesical instillation therapies in bladder cancer patients: a network metaanalysis. Cell Physiol Biochem 2017;41(4):1298—312. DOI: 10.1159/000464432. PMID: 28278504.
24. Patel S.G., Cohen A., Weiner A.B., Stein-berg G.D. Intravesical therapy for bladder cancer. Expert Opin Pharmacother 2015;16(6):889—901. DOI: 10.1517/14656566.2015.1024656. PMID: 25773220.
25. Deng X., Zhang X., Cheng Y. et al. XRCC1 polymorphisms associated with survival among Chinese bladder cancer patients receiving epirubicin and mitomycin C. Tumour Biol 2015;36(6):4591 —96. DOI: 10.1007/s13277-015-3104-0. PMID: 25616696.
26. Deng X., Yang X., Cheng Y. et al. GSTP1 and GSTO1 single nucleotide polymorphisms and the response of bladder cancer patients to intravesical chemotherapy. DOI: 10.1038/srep14000. PMID: 26354850.
27. Mittal R.D. Gene variants in predicting BCG response to urinary bladder cancer. Indian J Clin Biochem 2012;27(1):1—5. DOI: 10.1007/s12291-012-0191-1. PMID: 23277706.
28. Buffen K., Oosting M., Quintin J. et al. Autophagy controls BCG-induced trained immunity and the response to intravesical BCG therapy for bladder cancer. PLoS Pathog 2014;10(10):e1004485. DOI: 10.1371/journal.ppat.1004485. PMID: 25356988.
29. Williams S.B., Kamat A.M., Mmeje C. et al. Genetic variants in the inflammation pathway as predictors of recurrence and progression in non-muscle invasive bladder cancer treated with Bacillus Calmette— Guerin. Oncotarget 2017;8(51):88782—91. DOI: 10.18632/oncotarget.21222. PMID: 29179475.
30. Grotenhuis A.J., Dudek A.M., Vrhaegh G.W et al. Independent replication of published germline polymorphisms associated with urinary bladder cancer prognosis and treatment response. Bladder Cancer 2016;2(1):77—89. PMID: 27376129.
31. Lima L., Ferreira J.A., Tavares A. et al. FASL polymorphism is associated with response to bacillus Calmette—Guerin immunotherapy in bladder cancer. Urol Oncol 2014;32(1):44.e1-7. DOI: 10.1016/j.urolonc.2013.05.009. PMID: 23948181.
32. Ke H.L., Lin J., Ye Y. et al. Genetic variation in glutathione pathway genes predict cancer recurrence in patients treated with transurethral resection and Bacillus Calmette—Guerin instillation for nonmuscle invasive bladder cancer. Ann Surg Oncol 2015;22(12):4104—10. DOI: 10.1245/s10434-015-4431-5. PMID: 25851338.
33. Kang H.W., Tchey D.U., Yan C. et al. The predictive value of GSTT1 polymorphisms in predicting the early response to induction BCG therapy in patients with non-muscle invasive bladder cancer. Urol Oncol 2014;32(4):458—65. DOI: 10.1016/j.urolonc.2013.10.013. PMID: 24411789.
34. Lima L., Oliveira D., Ferreira J.A. et al. The role of functional polymorphisms in immune response genes as biomarkers of bacilli Calmette—Guerin (BCG) immunotherapy outcome in bladder cancer: establishment of a predictive profile in a Southern Europe population. BJU Int 2015;116(5):753—63. DOI: 10.1111/bju.12844. PMID: 24931268.
35. Zhang N., Jiang G., Liu X. et al. Prediction of Bacillus Calmette—Guerin response in patients with bladder cancer after transurethral resection of bladder tumor by using genetic variation based on genomic studies. Biomed Res Int 2016;2016:9859021. DOI: 10.1155/2016/9859021. PMID: 27896277.
36. Ryk C., Koskela L.R., Thiel T. et al. Out-come after BCG treatment for urinary bladder cancer may be influenced by polymorphisms in the NOS2 and NOS3 genes. Redox Biol 2015;6:272—7. DOI: 10.1016/j.redox.2015.08.008. PMID: 26298202.
37. Chiong E., Kesavan A., Mahendran R. et al. NRAMP1 and hGPX1 gene poly-morphism and response to Bacillus Calmette—Guerin therapy for bladder cancer. Eur Urol 2011;59(3):430—7. DOI: 10.1016/j.eururo.2010.11.031. PMID: 21163569.
38. Lenormand C., Couteau J., Nouhaud F.X. et al. Predictive value of NRAMP1 and HGPX1 gene polymorphism for maintenance BCG response in nonmuscle-invasive bladder cancer. Anticancer Res 2016;36(4):1737—43. PMID: 27069153.
39. Wei H., Kamat A., Chen M. et al. Associa¬tion of polymorphisms in oxidative stress genes with clinical outcomes for bladder cancer treated with Bacillus Calmette—Guerin. PLoS One 2012;7(6):e38533. DOI: 10.1371/journal.pone.0038533. PMID: 22701660.
40. Kandimalla R., van Tilborg A.A., Zwarthoff E.C. DNA methylation-based biomarkers in bladder cancer. Nat Rev Urol 2013;10(6):327—35. DOI: 10.1038/nrurol.2013.89. PMID: 23628807.
41. Agundez M., Grau L., Palou J. et al. Evaluation of the methylation status of tumour suppressor genes for predicting Bacillus Calmette—Guerin response in patients with T1G3 high-risk bladder tumours. Eur Urol 2011;60(1):131—40. DOI: 10.1016/j.eururo.2011.04.020. PMID: 21514719.
42. Husek P., Pacovsky J., Chmelarova M. et al. Methylation status as a predictor of intravesical Bacillus Calmette—Guerin (BCG) immunotherapy response of high grade non-muscle invasive bladder tumor. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2017;161(2):210—6. DOI: 10.5507/bp.2017.008. PMID: 28344356.
43. Zuiverloon T.C., Nieuweboer A.J., Vekony H. et al. Markers predicting response to bacillus Calmette—Guerin immunotherapy in high-risk bladder cancer patients: a systematic review. Eur Urol 2012;61(1):128—45. DOI: 10.1016/j.eururo.2011.09.026. PMID: 22000498.
44. Poli G., Cochetti G., Boni A. et al. Characterization of inflammasome-related genes in urine sediments of patients receiving intravesical BCG therapy. Urol Oncol 2017;35(12):674.e19—24. DOI: 10.1016/j.urolonc.2017.08.004. PMID: 28888400.
45. Rahmat J.N., Esuvaranathan K., Mahendran R. Bacillus Calmette—Guerin induces rapid gene expression changes in human bladder cancer cell lines that may modulate its survival. Oncol Lett 2018;15(6):9231—41. DOI: 10.3892/ol.2018.8462. PMID: 29844825.
46. Mano R., Zilber S., Di Natale R.G. et al. Heat shock proteins 60 and 70 are associated with longterm outcome of T1-stage high-grade urothelial tumors of the bladder treated with intravesical Bacillus Calmette—Guerin immunotherapy. Urol Oncol 2018;36(12):531.e9—17. DOI: 10.1016/j.urolonc.2018.09.007. PMID: 30337218.
47. He Y., Wang N., Zhou X. et al. Prognostic value of ki67 in BCG-treated non-muscle invasive bladder cancer: a meta-analysis and systematic review. BMJ Open 2018;8(4):e019635. DOI: 10.1136/bmjopen-2017-019635. PMID: 29666128.
48. Wang C., Li A., Yang S. et al. CXCL5 promotes mitomycin C resistance in non-muscle invasive bladder cancer by activating EMT and NF-KB pathway. Biochem Biophys Res Commun 2018;498(4): 862—8. DOI: 10.1016/j.bbrc.2018.03.071. PMID: 29545183.
49. Xu T., Qin L., Zhu Z. et al. MicroRNA-31 functions as a tumor suppressor and increases sensitivity to mitomycin-C in urothelial bladder cancer by targeting integrin a5. Oncotarget 2016;7(19):27445—57. DOI: 10.18632/oncotarget.8479. PMID: 27050274.
50. Kamat A.M., Li R., O’Donnell M.A. et al. Predicting response to intravesical Bacillus Calmette-Guerin immunotherapy: are we there yet? A systematic review. Eur Urol 2018;73(5):738—48. DOI: 10.1016/j.eururo.2017.10.003. PMID: 29055653.
51. Sanguedolce F., Cormio A., Massenio P. et al. Altered expression of HER-2 and the mismatch repair genes MLH1 and MSH2 predicts the outcome of T1 high-grade bladder cancer. J Cancer Res Clin Oncol 2018;144(4):637—44. DOI: 10.1007/s00432-018-2593-9. PMID: 29362915.
52. Abbosh P.H., Plimack E.R. Molecular and clinical insights into the role and significance of mutated DNA repair genes in bladder cancer. Bladder Cancer 2018;4(1):9—18. DOI: 10.3233/BLC-170129. PMID: 29430503.
53. Mouw K.W. DNA repair pathway alterations in bladder cancer. Cancers (Basel) 2017;9(4):E28. DOI: 10.3390/cancers9040028. PMID: 28346378.
54. Liem E.I., Baard J., Cauberg E.C. et al. Fluorescence in situ hybridization as prognostic predictor of tumor recurrence during treatment with Bacillus Calmette-Guerin therapy for intermediate- and high-risk non-muscle-invasive bladder cancer. Med Oncol 2017;34(10):172. DOI: 10.1007/s12032-017-1033-z. PMID: 28866819.
55. Grivas P.D., Melas M., Papavassiliou A.G. The biological complexity of urothelial carcinoma: insights into carcinogenesis, targets and biomarkers of response to therapeutic approaches. Semin Cancer Biol 2015;35:125-32. DOI: 10.1016/j.semcancer.2015.08.006. PMID: 26304731.
56. Mikhailenko D.S., Nemtsova M.V Point somatic mutations in bladder cancer: key carcinogenesis events, diagnostic markers and therapeutic targets. Urologiya = Urology 2016;(1):100—5. (In Russ.).
57. Ren R., Tyryshkin K., Graham C.H. et al. Comprehensive immune transcriptomic analysis in bladder cancer reveals subtype specific immune gene expression patterns of prognostic relevance. Oncotarget 2017;8(41):70982—1001. DOI: 10.18632/oncotarget.20237. PMID: 29050337.
58. Meeks J.J., Carneiro B.A., Pai S.G. et al. Genomic characterization of high-risk non-muscle invasive bladder cancer. Oncotarget 2016;7(46):75176—84. DOI: 10.18632/oncotarget.12661. PMID: 27750214.
59. Pietzak E.J., Bagrodia A., Cha E.K. et al. Next-generation sequencing of nonmuscle invasive bladder cancer reveals potential biomarkers and rational therapeutic targets. Eur Urol 2017;72(6):952—9. DOI: 10.1016/j.eururo.2017.05.032. PMID: 28583311.
60. Pang K.H., Esperto F., Noon A.P. et al. Opportunities of next-generation sequencing in non-muscle invasive bladder cancer outcome prediction. Transl Androl Urol 2017;6(6):1043—8. DOI: 10.21037/tau.2017.10.04. PMID: 29354491.
61. Scott S.N., Ostrovnaya I., Lin C.M. et al. Next-generation sequencing of urine specimens: a novel platform for genomic analysis in patients with non-muscleinvasive urothelial carcinoma treated with bacille Calmette—Guerin. Cancer Cytopathol 2017;125(6):416—26. DOI: 10.1002/cncy.21847. PMID: 28339163.
62. Volkova M.I., Gridneva Ya.V., Ol’shanskaya A.S. Immunotherapy in urothelial cancer: recent data and perspectives. Onkourologuya = Cancer Urology 2017;13(4):16—24. (In Russ.).
63. Dietrich B., Srinivas S. Urothelial carcinoma: the evolving landscape of immunotherapy for patients with advanced disease. Res Rep Urol 2018;10:7—16. DOI: 10.2147/RRU.S125635. PMID: 29417045.
64. Gorelov A.I., Simbirtsev A.S., Zhuravskiy D.A., Gorelova A.A. A review of the PD-1/PD-l1 checkpoint in bladder cancer: from mediator of immune escape to target for treatment. Urologicheskie vedomosti = Urological Statements 2018;8(2):64—72. (In Russ.).
65. Huang Y., Zhang S.D., McCrudden C. et al. The prognostic significance of PD-L1 in bladder cancer. Oncol Rep 2015;33(6):3075—84. DOI: 10.3892/or.2015.3933. PMID: 25963805.
66. Chang L., Chang M., Chang H.M., Chang F. Microsatellite instability: a predictive biomarker for cancer immunotherapy. Appl Immunohistochem Mol Morphol 2018;26(2):e15—21. DOI: 10.1097/PAI.0000000000000575. PMID: 28877075.
67. Aggen D.H., Drake C.G. Biomarkers for immunotherapy in bladder cancer: a moving target. J Immunother Cancer 2017;5(1):94. DOI: 10.1186/s40425-017-0299-1. PMID: 29157296.
68. Kim H.S., Seo H.K. Immune checkpoint inhibitors for urothelial carcinoma. Investig Clin Urol 2018;59(5):285—96. DOI: 10.4111/icu.2018.59.5.285. PMID: 30182073.
69. Felsenstein K.M., Theodorescu D. Precision medicine for urothelial bladder cancer: update on tumour genomics and immunotherapy. Nat Rev Urol 2018;15(2):92—111. DOI: 10.1038/nrurol.2017.179. PMID: 29133939.
70. Wezel F., Vallo S., Roghmann F. et al. Do we have biomarkers to predict response to neoadjuvant and adjuvant chemotherapy and immunotherapy in bladder cancer? Transl Androl Urol 2017;6(6):1067—80. DOI: 10.21037/tau.2017.09.18. PMID: 29354494.
71. Udall M., Rizzo M., Kenny J. et al. PD-L1 diagnostic tests: a systematic lit-erature review of scoring algorithms and test-validation metrics. Diagn Pathol 2018;13(1):12. DOI: 10.1186/s13000-018-0689-9. PMID: 29426340.
72. Hashizume A., Umemoto S., Yokose T. et al. Enhanced expression of PD-L1 in non-muscle-invasive bladder cancer after treatment with Bacillus Calmette—Guerin. Oncotarget 2018;9(75):34066—78. DOI: 10.18632/oncotarget.26122. PMID: 30344922.
73. Wang Y., Liu J., Yang X. et al. Bacillus Calmette—Guerin and anti-PD-L1 combination therapy boosts immune response against bladder cancer. Onco Targets Ther 2018;11:2891 —9. DOI: 10.2147/OTT.S165840. PMID: 29844686.
74. Stenehjem D.D., Tran D., Nkrumah M.A., Gupta S. PD1/PDL1 inhibitors for the treatment of advanced urothelial bladder cancer. Onco Targets Ther 2018;11:5973— 89. DOI: 10.2147/OTT.S135157. PMID: 30275703.
75. Rouanne M., Roumiguie M., Houede N. et al. Development of immunotherapy in bladder cancer: present and future on targeting PD(L)1 and CTLA-4 pathways. World J Urol 2018;36(11):1727—40. DOI: 10.1007/s00345-018-2332-5. PMID: 29855698.
Review
For citations:
Mikhaylenko D.S., Sergienko S.A., Zaborsky I.N., Saflullin K.N., Serebryany S.A., Safronova N.Yu., Nemtsova M.V., Kaprin A.D., Alekseev B.Ya. The role of molecular genetic alterations in sensitivity of the adjuvant intravesical therapy for non-muscle invasive bladder cancer. Cancer Urology. 2018;14(4):124-138. (In Russ.) https://doi.org/10.17650/1726-9776-2018-14-4-124-138