Impact of germline CHEK2 mutations on biochemical relapse free survival and metastasis free survival after radical treatment for patients with prostate cancer
https://doi.org/10.17650/1726-9776-2018-14-4-53-67
Abstract
Objective: to evaluate the prognostic value of pathogenic germline BRCA1, BRCA2 and CHEK2 mutations on biochemical relapse-free survival (BRFS) and metastasis-free survival (MFS) following radical treatment in patients with localized and locally advanced prostate cancer (PCa).
Materials and methods. Tumor features and outcomes of 102 patients with PCa were analyzed. In all patients nadir prostate-specific antigen (PSA) have been achieved: radical prostatectomy was undergone by 85 patients; 17 patients received radical radiotherapy. Exclusion criteria were postoperative nadir PSA >0.2 ng/mL, adjuvant hormone therapy. During follow-up a total of 65 (63.7 %) patients developed biochemical relapse (BCR), and 39 (38.2 %) patients developed metastatic progression of PCa. All patients were genotyped for clinically significant pathogenic germline mutations 1100delC, I157Tand IVS2+1G>A in the CHEK2gene, 185delAG, 4153delA, 5382insC, 3875del4, 3819del5, C61G, 2080delA in the BRCA1 gene, 6174delT in the BRCA2 gene by polymerase chain reaction real-time using a set “OncoGenetics” (LLC “Research and Production Company DNA-Technology”, Russia, registration certificate № 2010/08415). The second step was the determination of the coding part of the BRCA1 and BRCA2 genes by the Sanger sequencing using a set “Beckman Coulter enomeLab GeXP”.
Results. Pathogenic germline mutations in the CHEK2 gene were identified in 16 (15.7 %) patients: heterozygous missense mutation I157T (c.470T>C, rs17879961) was identified in 15 (14.7 %) patients, heterozygous mutation IVS2+1G>A (c.319+1G>A, rs765080766) was identified in 1 (0.9 %) patient. No cases of the 1100delC mutation in the CHEK2 gene and clinically significant mutations in the BRCA1 and BRCA2 genes were detected. Germline mutations I157TandIVS2+1G>A in the CHEK2gene are statistically significant independent unfavorable prognostic factor for BRFS (hazard ratio (HR) 3.272; 95 % confidence interval (CI) 1.688—6.341, p <0.001) and marginally significant independent unfavorable prognostic factor for MFS (HR 2.186; 95 % CI 0.932—5.126, p = 0.072). Subgroup analysis confirm independent prognostic value of germline CHEK2 mutations in patients with localized PCa (for BRFS HR 3.048; 95 % CI 1.024—9.078; p = 0.045; for MFS HR 5.168; 95 % CI 1.231—21.699; p = 0,025), and its marginally significant prognostic value in patient with locally advanced PCa T3-T4N0M0 (for BRFS HR 3.099; 95 % CI 0.991-9.689; р = 0.052) and TanyN1M0 stage (for MFS HR 5.089; 95 % CI 0.724-35.755; p = 0.102). Germline mutations I157T and IVS2+1G>A in the CHEK2 gene are associated with increased risk of early BCR during 12 months (HR 3.795; 95 % CI 2.06-6.98; p <0.001) and early metastatic progression during 24 months (HR 6.72; 95 % CI 2.02-22.34; p = 0.004) following radical treatment. This study has certain limitations due to its retrospective recruitment and a small sample of patients.
Conclusions. Our results confirm that germline CHEK2 mutations I157T and IVS2+1G>A are an unfavorable prognostic factor for patients with PCa, associated with increased risk of early biochemical relapse and metastatic progression, worse BRFS and MFS.
About the Authors
V. B. MatveevRussian Federation
23 Kashirskoe Shosse, Moscow 115478.
Competing Interests: The authors declare no conflict of interest.
A. A. Kirichek
Russian Federation
23 Kashirskoe Shosse, Moscow 115478.
Competing Interests: The authors declare no conflict of interest.
A. V. Savinkova
Russian Federation
23 Kashirskoe Shosse, Moscow 115478.
Competing Interests: The authors declare no conflict of interest.
A. V. Khachaturyan
Russian Federation
23 Kashirskoe Shosse, Moscow 115478.
Competing Interests: The authors declare no conflict of interest.
D. A. Golovina
Russian Federation
23 Kashirskoe Shosse, Moscow 115478.
Competing Interests: The authors declare no conflict of interest.
L. N. Lyubchenko
Russian Federation
23 Kashirskoe Shosse, Moscow 115478.
Competing Interests: The authors declare no conflict of interest.
References
1. Malignant tumors in Russia in 2017 (morbidity and mortality). Eds.: A.D. Kaprin,V.V. Starinskiy, G.V. Petrova. Moscow: MNIOI im. P.A. Gertsena - filial FGBU “NMIRTS” Minzdrava Rossii, 2018. 250 p. (In Russ.).
2. State of oncological care in Russia in 2017. Eds.: A.D. Kaprin, V.V. Starinskiy, G.V. Petrova. Moscow: MNIOI im. P.A. Gertsena — filial FGBU “NMIRTS” Minzdrava Rossii, 2018. 236 p. (In Russ.).
3. D’Amico A.V., Whittington R., Malkowicz S.B. et al. Predicting prostate specific antigen outcome preoperatively in the prostate specific antigen era. J Urol 2001;166(6):2185—8. PMID: 11696732.
4. Zumsteg Z.S., Chen Z., Howard L.E. et al. Modified risk stratification grouping using standard clinical and biopsy information for patients undergoing radical prostatectomy: results from SEARCH. Prostate 2017;77(16):1592— 600. DOI: 10.1002/pros.23436. PMID: 28994485. Available at: https://doi.org/10.1002/pros.23436.
5. Park Y.H., Kim Y., Yu H. et al. Is lympho-vascular invasion a powerful predictor for biochemical recurrence in pT3 N0 prostatecancer? Results from the K-CaP database. Sci Rep 2016;6:25419. DOI: 10.1038/srep25419. PMID: 27146602.
6. Zareba P., Flavin R., Isikbay M. et al. Perineural invasion and risk of lethal prostate cancer. Cancer Epidemiol Biomarkers Prev 2017;26(5):719—26. DOI: 10.1158/1055-9965.EPI-16-0237. PMID: 28062398.
7. Bravi C.A., Shariat Sh.F., Mirone V. et al. MP34-09 Prevalence and prognostic impact of prostate cancer histological variants at radical prostatectomy: a long-term, single center analysis. J Urol;199(4):e441. Available at: https://doi.org/10.1016/j.juro.2018.02.1101.
8. Robinson D., Van Allen E.M., Wu Y.M. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5): 1215—28. DOI: 10.1016/j.cell.2015.05.001. PMID: 26000489.
9. Ghabili K., Nguyen K., Hsiang W. et al. National trends in the management of patients with positive surgical margins at the time of radical prostatectomy. J Clin Oncol 2018;36:6_suppl:111. DOI: 10.1200/JCO.2018.36.6_suppl.111.
10. Bandini M., Preisser F., Soligo M. et al. MP21-14 Stage-migration and survival of lymph node positive prostate cancer patients: a comprehensive trend analyses of surgically treated men over the last two decades. J Urol;199(4):e268. Available at: https://doi.org/10.1016/j.juro.2018.02.705.
11. Castro E., Goh C., Olmos D. et al. Germ-line BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31:1748—57. DOI: 10.1200/JCO.2012.43.1882. PMID:23569316. Available at: https://doi.org/10.1200/JCO.2012.43.1882.
12. Pritchard C.C., Mateo J., Walsh M.F. et al. Inherited DNA-repair gene mutations in men with metastatic prostate cancer. N Engl J Med 2016;375(5):443—53. PMID: 27433846. Available at: https://doi.org/10.1056/NEJMoa1603144.
13. Gin V.N., Hegarty S.E., Hyatt C. et al. Germline genetic testing for inherited prostate cancer in practice: Implications for genetic testing, precision therapy, and cascade testing. Prostate 2018;1—7. Available at: https://doi.org/10.1002/pros.23739.
14. Pan M., Cong P„ Wang Y. et al. Novel LOVD databases for hereditary breast cancer and colorectal cancer genes in the Chinese population. Hum Mutat 2011;32(12):1335—40. DOI: 10.1002/humu.21588. PMID: 21901790.
15. Kirichek AA, Kamolov B.Sh., Savyolov N.A., Matveev V.B. On staging of urologic cancers in accordance with the updated 8th edition of the TNM Classification. Onkourologiya = Cancer Urology 2018;14(1):166—72. (In Russ.).
16. Hirao A., Kong Y.Y., Matsuoka S. et al. DNA damage-induced activation of p53 by the checkpoint kinase Chk2. Science 2000;287:1824—7. PMID: 10710310.
17. Cai Z., Chehab N.H., Pavletich N.P. Structure and activation mechanism of the CHK2 DNA damage checkpointkinase. Mol Cell 2009;35:818—29. DOI: 10.1016/j.molcel.2009.09.007. PMID: 19782031.
18. Ahn J., Urist M., Prives C. The Chk2 protein kinase. DNA Repair (Amst) 2004;3:1039—47. DOI: 10.1016/j.dnarep.2004.03.033. PMID: 15279791.
19. Bartek J., Lukas J. Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 2003;3:421 —9. PMID: 12781359.
20. Stracker T.H., Usui T., Petrini J.H. Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst) 2009;8:1047—54. DOI: 10.1016/j.dnarep.2009.04.012. PMID: 19473886.
21. Harper J.W., Elledge S.J. The DNA da-mage response: ten years after. Mol Cell 2007;28:739—45. DOI: 10.1016/j.molcel.2007.11.015. PMID: 18082599.
22. Falck J., Mailand N., Syljuasen R.G. et al. The ATM-Chk2-Cdc25A checkpoint pathway guards against radioresistant DNA synthesis. Nature 2001;410:842—7. DOI: 10.1038/35071124. PMID: 11298456.
23. Matsuoka S., Rotman G., Ogawa A. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc Natl Acad.Sci USA 2000;97:10389—94. DOI: 10.1073/pnas.190030497. PMID: 10973490.
24. Lukas C., Falck J., Bartkova J. et al. Distinct spatiotemporal dynamics of mammalian checkpoint regulators induced by DNA damage. Nat Cell Biol 2003;5: 255—60. DOI: 10.1038/ncb945. PMID: 12598907.
25. Antoni L., Sodha N., Collins I. et al. CHK2 kinase: cancer susceptibility and cancer therapy — two sides of the same coin? Nat Rev Cancer 2007;7:925—36. DOI: 10.1038/nrc2251. PMID: 18004398.
26. Meijers-Heijboer H., van den Ouweland A., Klijn J. et al. Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 2002;31:55-9. DOI: 10.1038/ng879. PMID: 11967536.
27. Vahteristo P., Bartkova J., Eerola H. et al. A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 2002;71:432-8. DOI: 10.1086/341943. PMID: 12094328.
28. Aktas D., Arno M.J., Rassool F. et al. Analysis of CHK2 in patients with myelodysplastic syndromes. Leuk Res 2002;26:985-7. PMID: 12363465.
29. Dong X., Wang L., Taniguchi K. et al. Mutations in CHEK2 associated with prostate cancer risk. Am J Hum Genet 2003;72:270— 80. DOI: 10.1086/346094. PMID: 12533788.
30. Kleibl Z., Havranek O., Hlavata I. et al. The CHEK2 gene I157T mutation and other alterations in its proximity increase the risk of sporadic colorectal cancer in the Czech population. Eur J Cancer 2009;45(4):618—24. DOI: 10.1016/j.ejca.2008.09.022. PMID: 18996005.
31. Matsuoka S., Nakagawa T., Masuda A. et al. Reduced expression and impaired kinase activity of a Chk2 mutant identified in human lung cancer. Cancer Res 2001;61:5362-5. PMID: 11454675.
32. Miller C.W., Ikezoe T., Krug U. et al. Mutations of the CHK2 gene are found in some osteosarcomas, but are rare in breast, lung, and ovarian tumors. Genes Chromosomes Cancer 2002;33:17-21. PMID: 11746983.
33. Nasedkina T.V., Gromyko O.E., Emelyanova M.A. et al. Determination of germinal mutations in the BRCA1, BRCA2 and CHEK2 genes using biochips in patients with breast cancer. Molekulyarnaya Biologiya = Molecular Biology 2014;48(2):243-50. (In Russ.).
34. Bateneva E.I., Filippova M.G., Tyulyandina A.S. et al. High rate of mutations in the BRCA1, BRCA2, CHEK2, NBN, and BLM genes in Russian ovarian cancer patients. Opukholi zhenskoy reproduktivnoy systemy = Tumors of female reproductive system 2014;(4):51—6. (In Russ.).
35. Bateneva E.I. New diagnostic panel to identify hereditary susceptibility to the development of breast cancer and ovarian cancer. Author’s abatract of thesis ... of candidate medical sciences. RONTC im. N.N. Blokhin, Moscow, 2015. P. 22. (In Russ.).
36. Cybulski C., Wokolorczyk D., Kluzniak W. et al. An inherited NBN mutation is associated with poor prognosis prostate cancer. Br J Cancer 2013;108(2):461-8. DOI: 10.1038/bjc.2012.486. PMID: 23149842.
37. Seppala E.H., Ikonen T., Mononen N. et al. CHEK2 variants associate with hereditary prostate cancer. Br J Cancer 2003;89(10):1966—70. DOI: 10.1038/sj.bjc.6601425. PMID: 14612911.
38. Paulo P., Maia S., Pinto C. et al. Targeted next generation sequencing identifies functionally deleterious germline mutations in novel genes in early-onset/familial prostate cancer. PLoS Genet 2018;14(4):e1007355. DOI: 10.1371/journal.pgen.1007355. PMID: 29659569.
39. Wu Y., Yu H., Zheng S.L. et al. A comprehensive evaluation of CHEK2 germline mutations in men with prostate cancer. Prostate 2018;78(8):607—15. DOI: 10.1002/pros.23505. PMID: 29520813.
Review
For citations:
Matveev V.B., Kirichek A.A., Savinkova A.V., Khachaturyan A.V., Golovina D.A., Lyubchenko L.N. Impact of germline CHEK2 mutations on biochemical relapse free survival and metastasis free survival after radical treatment for patients with prostate cancer. Cancer Urology. 2018;14(4):53-67. (In Russ.) https://doi.org/10.17650/1726-9776-2018-14-4-53-67