Preview

Cancer Urology

Advanced search

Expression of platelet-derived growth factor alpha and beta genes PDGFRA and PDGFRB associated with biochemical recurrence of prostate cancer after radical prostatectomy

https://doi.org/10.17650/1726-9776-2017-13-4-45-50

Abstract

We performed genome-wide transcriptome meta-analysis of prostate cancer samples after radical prostatectomy of patients without lymph node metastasis. Significant associations were determined between expression of platelet-derived growth factor alpha and beta genes (PDGFRA and PDGFRB) and probability and time of onset of biochemical recurrence.

About the Authors

M. Yu. Shkurnikov
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Radiology Center, Ministry of Health of Russia
Russian Federation
3 2nd Botkinskiy Proezd, Moscow 125284


B. Ya. Alekseev
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Radiology Center, Ministry of Health of Russia
Russian Federation
3 2nd Botkinskiy Proezd, Moscow 125284


References

1. Mottet N., Bellmunt J., Bolla M. et al. EAU-ESTRO-SIOG guidelines on prostate cancer. Part 1: screening, diagnosis and local treatment with curative intent. Eur Urol 2017;71(4):618–29. DOI: 10.1016/j.eururo.2016.08.003. PMID: 27568654.

2. Smith J.A., Seaman J.P., Gleidman J.B., Middleton R.G. Pelvic lymph node metas

3. tasis from prostatic cancer: influence of tumor grade and stage in 452 consecutive patients. J Urol 1983;130(2):290–2. PMID: 6876275.

4. Schilling D., Hennenlotter J., Gakis G. et al. Prospective assessment of histological serial sectioning of pelvic lymph nodes in prostate cancer: a cost-benefit analysis. BJU Int 2012;110(6 Pt B):E166–71. DOI: 10.1111/j.1464-410X.2012.10928.x. PMID: 22314026.

5. Karalak A., Homcha-Em P. Occult axillary lymph node metastases discovered by serial section in node-negative breast cancer. J Med Assoc Thai 1999;82(10):1017–9. PMID: 10561965.

6. Hartveit E. Attenuated cells in breast stroma: the missing lymphatic system of the breast. Histopathology 1990;16(6):533–43. PMID: 2376396.

7. Pepper M.S., Tille J.C., Nisato R., Skobe M. Lymphangiogenesis and tumor metastasis. Cell Tissue Res 2003;314(1):167–77. DOI: 10.1007/s00441-003-0748-7. PMID: 12883995.

8. Joukov V., Pajusola K., Kaipainen A. et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 1996;15(2):1751. PMID: 8612600.

9. Stacker S.A., Caesar C., Baldwin M.E. et al. VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 2001;7(2):186–91. DOI: 10.1038/84635. PMID: 11175849.

10. Skobe M., Hawighorst T., Jackson D.G. et al. Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 2001;7(2):192–8. DOI: 10.1038/84643. PMID: 11175850.

11. Mandriota S.J., Jussila L., Jeltsch M. et al. Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 2001;20(4):672–82. DOI: 10.1093/emboj/20.4.672. PMID: 11179212.

12. Tsurusaki T., Kanda S., Sakai H. et al. Vascular endothelial growth factor-C expression in human prostatic carcinoma and its relationship to lymph node metastasis. Br J Cancer 1999;80(1–2):309–13. DOI: 10.1038/sj.bjc.6690356. PMID: 10390013.

13. Wong S.Y., Haack H., Crowley D. et al. Tumor-secreted vascular endothelial growth factor-C is necessary for prostate cancer lymphangiogenesis, but lymphangiogenesis is unnecessary for lymph node metastasis. Cancer Res 2005;65(21):9789–98. DOI: 10.1158/0008-5472.CAN-05-0901. PMID: 16267000.

14. Galatenko V.V., Shkurnikov M.Y., Sama- tov T.R. et al. Highly informative marker sets consisting of genes with low individual de gree of differential expression. Sci Rep 2015;5:14967. DOI: 10.1038/srep14967. PMID: 26446398.

15. Mortensen M.M., Høyer S., Lynnerup A.S. et al. Expression profiling of prostate cancer tissue delineates genes associated with recurrence after prostatectomy. Sci Rep 2015;5(1):16018. DOI: 10.1038/srep16018. PMID: 26522007.

16. Nakagawa T., Kollmeyer T.M., Morlan B.W. et al. A tissue biomarker panel predicting systemic progression after PSA recurrence post-definitive prostate cancer therapy. PLoS One 2008;3(5):e2318. DOI: 10.1371/journal.pone.0002318. PMID: 18846227.

17. Briganti A., Suardi N., Capogrosso P. et al. Lymphatic spread of nodal metastases in high-risk prostate cancer: the ascending pathway from the pelvis to the retroperitoneum. Prostate 2012;72(2):186–92. DOI: 10.1002/pros.21420. PMID: 21538428.

18. Burton J.B., Priceman S.J., Sung J.L. et al. Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res 2008;68(19):7828–37. DOI: 10.1158/00085472.CAN-08-1488. PMID: 18829538.

19. Nathanson S.D. Insights into the mechanisms of lymph node metastasis. Cancer 2003;98(2):413–23. DOI: 10.1002/cncr.11464. PMID: 12872364.

20. Zhang H., Muders M.H., Li J. et al. Loss of NKX3.1 favors vascular endothelial growth factor-C expression in prostate cancer. Cancer Res 2008;68(21):8770–8. DOI: 10.1158/0008-5472.CAN-08-1912. PMID: 18974119.

21. Karlsson M.C., Gonzalez S.F., Welin J., Fuxe J. Epithelial-mesenchymal transition in cancer metastasis through the lymphatic system. Mol Oncol 2017;11(7):781–91. DOI: 10.1002/1878-0261.12092. PMID: 28590032.

22. Cortes C., Vapnik V. Support-Vector Networks. Machine Learning 1995;20(3):273–97.

23. Huang W., Fridman Y., Bonfil R.D. et al. A novel function for platelet-derived growth factor-D: induction of osteoclastic differentiation for intraosseous tumor growth. Oncogene 2012;31(42):4527–35. DOI: 10.1038/onc.2011.573. PMID: 22158043.

24. Hägglöf C., Hammarsten P., Josefsson A. et al. Stromal PDGFR-beta expression in prostate tumors and non-malignant prostate tissue predicts prostate cancer survival. PLoS One 2010;5(5):e10747. DOI: 10.1371/journal.pone.0010747. PMID: 20505768.

25. Rosenberg A., Mathew P. Imatinib and prostate cancer: lessons learned from targeting the platelet-derived growth factor receptor. Expert Opin Investig Drugs 2013;22(6):787–94. DOI: 10.1517/13543784.2013.787409. PMID: 23540855.

26. Nordby Y., Richardsen E., Rakaee M. et al. High expression of PDGFR-β in prostate cancer stroma is independently associated with clinical and biochemical prostate cancer recurrence. Sci Rep 2017;7:43378. DOI: 10.1038/srep43378. PMID: 28233816.

27. Li Y., Cozzi P.J., Russell P.J. Promising tumor-associated antigens for future prostate cancer therapy. Med Res Rev 2010;30(1):67–101. DOI: 10.1002/med.20165. PMID: 19536865.

28. Trevino V., Tadesse M.G., Vannucci M. et al. Analysis of normal-tumour tissue interaction in tumours: prediction of prostate cancer features from the molecular profile of adjacent normal cells. PLoS One 2011;6(3):e16492. DOI: 10.1371/journal.pone.0016492. PMID: 21479216.

29. Breen K.J., O’Neill A., Murphy L. et al. Investigating the role of the IGF axis as a predictor of biochemical recurrence in prostate cancer patients post-surgery. Prostate 2017;77(12):1288–300. DOI: 10.1002/pros.23389. PMID: 28726241.

30. Chang C.F., Pao J.B., Yu C.C. et al. Common variants in IGF1 pathway genes and clinical outcomes after radical prostatectomy. Ann Surg Oncol 2013;20(7):2446–52. DOI: 10.1245/s10434-013-2884-y. PMID: 23397154.


Review

For citations:


Shkurnikov M.Yu., Alekseev B.Ya. Expression of platelet-derived growth factor alpha and beta genes PDGFRA and PDGFRB associated with biochemical recurrence of prostate cancer after radical prostatectomy. Cancer Urology. 2017;13(4):45-50. https://doi.org/10.17650/1726-9776-2017-13-4-45-50

Views: 1058


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X