Preview

Cancer Urology

Advanced search

Circulating microRNA expression in connection with prostate cancer lymphogenous metastasis

https://doi.org/10.17650/1726-9776-2018-14-1-87-93

Abstract

Background. Lymph node metastases in prostate cancer (PC) are a negative prognostic factor. Non-invasive methods for their diagnostics are of primary importance. Objectives are identification of miRNA markers of lymph node metastases in plasma of PC patients and investigation of changes in primary tumors transcriptomes and plasma miRNA profiles during metastasis.

Materials and methods. Plasma of 20 PC patients (10 with pN0M0 and 10 with pN1M0 stage) were collected and plasma miRNA expression was profiled on GeneChip miRNA 4.0 arrays (Affymetrix, USA). Target genes were searched for miRNAs with significant expression difference between pN0M0 and pN1M0 groups (fold change ≥2; p <0,05). In addition, bioinformatic analysis of 392 PC primary tumors transcriptomes from PRAD collection (ТCGA Research Network: http://cancergenome.nih.gov/) was done (318 for pN0M0 stage and 74 for pN1M0 stage).

Results. The level of 17 miRNAs were significantly lower in plasma of pN1M0 group. Analysis of primary tumors expression profiles revealed 88 genes with significantly different expression between pN0M0 and pN1M0 groups (fold change ≥1,5; p <0,05). 11 of these genes are the potential targets of 17 miRNAs with lower levels in plasma of pN1M0 group. Interestingly, in most cases (8 out of 11) expression of these genes in primary tumor is elevated.

Conclusion. The level of 17 miRNAs were significantly lower in plasma of PC patients with lymph nodes metastases (pN1M0). Analysis  of primary tumor transcriptomes revealed a possible connection between miRNAs and their target genes levels in primary tumor and plasma. 17 plasma miRNAs found in this work could be a novel non-invasive markers of lymph nodes metastases in PC.

About the Authors

M. Yu. Shkurnikov
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Center of Radiology, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284


Competing Interests: Конфликт интересов отсутствует


Yu. A. Makarova
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Center of Radiology, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284


Competing Interests: Конфликт интересов отсутствует


E. N. Knyazev
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Center of Radiology, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284


Competing Interests: Конфликт интересов отсутствует


A. A. Zotikov
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Center of Radiology, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284


Competing Interests: Конфликт интересов отсутствует


K. M. Nyushko
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Center of Radiology, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284


Competing Interests: Конфликт интересов отсутствует


B. Ya. Alekseev
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Center of Radiology, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284


Competing Interests: Конфликт интересов отсутствует


А. D. Kaprin
P.A. Hertzen Moscow Oncology Research Institute – branch of the National Medical Research Center of Radiology, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284


Competing Interests: Конфликт интересов отсутствует


References

1. Smith J.A., Seaman J.P., Gleidman J.B., Middleton R.G. Pelvic lymph node metastasis from prostatic cancer: influence of tumor grade and stage in 452 consecutive patients. J Urol 1983;130(2):290–2. PMID: 6876275.

2. Turchinovich A., Samatov T.R., Tonevit- sky A.G., Burwinkel B. Circulating miRNAs: cell-cell communication function? Front Genet 2013;4:119. DOI: 10.3389/fgene.2013.00119. PMID: 23825476.

3. Peinado H., Zhang H., Matei I.R. et al. Pre-metastatic niches: organ-specific homes for metastases. Nat Rev Cancer 2017;17(5):302–17. DOI: 10.1038/nrc.2017.6. PMID: 28303905.

4. Makarova J.A., Shkurnikov M.U., Wicklein D. et al. Intracellular and extracellular microRNA: an update on localization and biological role. Prog Histochem Cytochem 2016;51(3–4):33–49. DOI: 10.1016/j.proghi.2016.06.001. PMID: 27396686.

5. Shkurnikov M.Y., Knyazev E.N., Fomicheva K.A. et al. Analysis of plasma microRNA associated with hemolysis. Bull Exp Biol Med 2016;160(6):748–50. DOI: 10.1007/s10517-016-3300-y. PMID: 27165077.

6. Shkurnikov M.Yu., Makarova Yu.A., Knyazev E.N. et al. Profile of microRNA in blood plasma of healthy humans. Bulleten eksperimentalnoy biologii i meditsiny = Bulletin of Experimental Biology and Medicine 2015;160(11):577–9. (In Russ.).

7. Chou C.H., Chang N.W., Shrestha S. et al. miRTarBase 2016: updates to the experimentally validated miRNA-target interactions database. Nucleic Acids Res 2015;44(D1):D239–47. DOI: 10.1093/nar/gkv1258. PMID: 26590260.

8. Brenu E.W., Ashton K.J., Batovska J. et al. High-throughput sequencing of plasma microRNA in chronic fatigue syndrome/ myalgic encephalomyelitis. PLoS One 2014;9(9):e102783. DOI: 10.1371/journal.pone.0102783. PMID: 25238588.

9. Williams Z., Ben-Dov I.Z., Elias R. et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proc Natl Acad Sci USA 2013;110(11):4255–60. DOI: 10.1073/pnas.1214046110. PMID: 23440203.

10. Liao W., Huang G., Liao Y. et al. High KIF18A expression correlates with unfavorable prognosis in primary hepatocellular carcinoma. Oncotarget 2014;5(21):10271–9. DOI: 10.18632/oncotarget.2082. PMID: 25431949.

11. Zhang W., He W., Shi Y. et al. High expression of KIF20A is associated with poor overall survival and tumor progression in early-stage cervical squamous cell carcinoma. PLoS One 2016;11(12):e0167449. DOI: 10.1371/journal.pone.0167449. PMID: 27941992.

12. Chen Z., Zhang C., Wu D. et al. PhosphoMED1-enhanced UBE2C locus looping drives castration-resistant prostate cancer growth. EMBO J 2011;30(12):2405–19. DOI: 10.1038/emboj.2011.154. PMID: 21556051.

13. Kuner R., Fälth M., Pressinotti N.C. et al. The maternal embryonic leucine zipper kinase (MELK) is upregulated in high-grade prostate cancer. J Mol Med (Berl) 2013;91(2):237–48. DOI: 10.1007/s00109-012-0949-1. PMID: 22945237.

14. Duxbury M.S., Whang E.E. RRM2 induces NF-kappaB-dependent MMP-9 activation and enhances cellular invasiveness. Biochem Biophys Res Commun 2007;354(1):190–6. DOI: 10.1016/j.bbrc.2006.12.177. PMID: 17222798.

15. Kishi H., Igawa M., Kikuno N. et al. Expression of the survivin gene in prostate cancer: correlation with clinicopathological characteristics, proliferative activity and apoptosis. J Urol 2004;171(5): 1855–60. DOI: 10.1097/01.ju.0000120317.88372.03. PMID: 15076293.

16. Pritchard C.C., Kroh E., Wood B. et al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev Res (Phila) 2012;5(3):492–7. DOI: 10.1158/19406207.CAPR-11-0370. PMID: 22158052.

17. Cheng H.H., Yi H.S., Kim Y. et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One 2013;8(6):e64795. DOI: 10.1371/journal.pone.0064795. PMID: 23762257.

18. Mitchell P.S., Parkin R.K., Kroh E.M. et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 2008;105(30):10513–8. DOI: 10.1073/pnas.0804549105. PMID: 18663219.

19. Mahn R., Heukamp L.C., Rogenhofer S. et al. Circulating microRNAs (miRNA) in serum of patients with prostate cancer. Urology 2011;77(5):1265.e9–16. DOI: 10.1016/j.urology.2011.01.020. PMID: 21539977.

20. Musumeci M., Coppola V., Addario A. et al. Control of tumor and microenvironment cross-talk by miR-15a and miR-16 in prostate cancer. Oncogene 2011;30(41):4231–42. DOI: 10.1038/onc.2011.140. PMID: 21532615.

21. Bonci D., Coppola V., Musumeci M. et al. The miR-15a-miR-16-1 cluster controls prostate cancer by targeting multiple oncogenic activities. Nat Med 2008;14(11):1271– 7. DOI: 10.1038/nm.1880. PMID: 18931683.

22. Walter B.A., Valera V.A., Pinto P.A., Merino M.J. Comprehensive microRNA profiling of prostate cancer. J Cancer 2013;4(5):350–7. DOI: 10.7150/jca.6394. PMID: 23781281.

23. Hart M., Nolte E., Wach S. et al. Comparative microRNA profiling of prostate carcinomas with increasing tumor stage by deep sequencing. Mol Cancer Res 2014;12(2):250–63. DOI: 10.1158/15417786.MCR-13-0230. PMID: 24337069.


Review

For citations:


Shkurnikov M.Yu., Makarova Yu.A., Knyazev E.N., Zotikov A.A., Nyushko K.M., Alekseev B.Ya., Kaprin А.D. Circulating microRNA expression in connection with prostate cancer lymphogenous metastasis. Cancer Urology. 2018;14(1):87-93. (In Russ.) https://doi.org/10.17650/1726-9776-2018-14-1-87-93

Views: 1189


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X