Preview

Cancer Urology

Advanced search

11C–Choline PET / CT in the detection of prostate cancer relapse in patients with rising PSA

https://doi.org/10.17650/1726-9776-2015-11-3-79-86

Abstract

Objective. To evaluate the diagnostic impact of 11C–Choline PET / CT in the detection of recurrent prostate cancer (PCa) in patients with biochemical relapse after radical prostatectomy and to assess the correlation between PSA levels and PET / CT detection rate of PCa relapse.

Subjects and methods. 85 patients with biochemical relapse (mean PSA 3.51 ± 3.87 ng / ml) after radical prostatectomy (n = 64) and radiotherapy (n = 21) underwent 11C–Choline PET / CT. According to PSA level, patients were divided into three groups:  2 ng / ml, 2 to 9 ng / ml and > 9 ng / ml.

Results. Overall, 11C–Choline PET / CT detected PCa relapse in 33 of 85 patients (39 %). The mean PSA value in PET-positive patients was 5.78 ± 4.95 (0.22–17.80) ng / ml, while in PET-negative patients – 1.43 ± 1.08 (0.28–4.57) ng / ml. Positive PET / CT results were obtained in 9 of 40 patients (22 %) with PSA of < 2 ng / ml, in 17 of 38 patients (45 %) with PSA of 2 to 9 ng / ml, and in 7 of 7 patients (100 %) with PSA of > 9 ng / ml. Local relapse was detected in 42 % (14 / 33) patients. Both local and distant metastases were diagnosed in 39 % (13 / 33) cases. Distant relapse
was identified in 19 % (6 / 33) cases. PET / CT allowed to assess the efficacy of treatment in 26 % (12 / 47) PET-negative patients under hormone therapy at the scan time. However, PET / CT wasn’t able to localize the site of PCa recurrence in these hormone-ensitive patients what might have affected the overall detection rate.

Conclusion. 1) 11C–Choline PET / CT was able to detect and correctly identify the site of PCa relapse in 39 % cases and therefore was useful in determining the further therapeutic approach. 2) Our data confirmed the strong correlation between PSA levels and 11C–Choline PET / CT detection rate of PCa relapse (r = 0.9; p < 0.001). 3) 11C–Choline PET / CT has limited utility in localizing the site of PCa recurrence in some patients under hormone therapy.

About the Authors

I. P. Aslanidis
ФГБУ «Научный центр сердечно-сосудистой хирургии им. А. Н. Бакулева» Минздрава России; Россия, 121552, Москва, Рублевское шоссе, 135
Russian Federation


D. M. Pursanova
ФГБУ «Научный центр сердечно-сосудистой хирургии им. А. Н. Бакулева» Минздрава России; Россия, 121552, Москва, Рублевское шоссе, 135
Russian Federation


O. V. Mukhortova
Bakoulev Scientific Center for Cardiovascular Surgery of the Ministry of Health of the Russian Federation; 135 Rublevskoye shosse, Moscow, 121552, Russia
Russian Federation


A. V. Silchenkov
Bakoulev Scientific Center for Cardiovascular Surgery of the Ministry of Health of the Russian Federation; 135 Rublevskoye shosse, Moscow, 121552, Russia
Russian Federation


D. A. Roshin
N. Lopatkin Scientific Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; 4 Bldg, 51, 3end Parkovaya str., Moscow, 105425, Russia
Russian Federation


A. V. Koryakin
N. Lopatkin Scientific Research Institute of Urology and Interventional Radiology – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; 4 Bldg, 51, 3end Parkovaya str., Moscow, 105425, Russia
Russian Federation


S. A. Ivanov
A. Tsyb Medical Radiological Research Centre – branch of the National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation; 10 Zhukov st., Obninsk, 249036, Kaluga region, Russia
Russian Federation


V. I. Shirokorad
Moscow City Cancer Hospital Sixti-Two; Istra Township 27, Krasnorgorsky District, Moscow Region, 143500, Russia
Russian Federation


References

1. GLOBOCAN 2012 (IARC), Cancer Incidence and Mortality Worldwide, Section of Cancer Surveillance, http://globocan.iarc. fr/ (доступ от 21/03/2015).

2. Чиссов В.И., Русаков И.Г. Заболеваемость раком предстательной железы в Российской Федерации. Экспериментальная и клиническая урология 2011;3(2):6–7. [Chissov V.I., Rusakov I.G. Prostate Cancer Morbidity in the Russian Federation. Experimental & Clinical Urology 2011;3(2):6–7. (In Russ.)].

3. National Cancer Institute, Surveillance Epidemiology and End Results. SEER Stat Fact Sheets: Prostate. http://seer.cancer.gov/statfacts/html/prost.html (доступ от 21/03/2015).

4. Jemal A., Siegel R., Ward E. et al. Cancer statistics, 2008. CA Cancer J Clin 2008;58(2):71–96.

5. Freedland S.J., Presti Jr. J.C., Amling C.L. et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urology 2003;61:736–41.

6. Han M., Partin A.W., Zahurak M. et al. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol 2003;169:517–23.

7. Chism D.B., Hanlon A.L., Horwitz E.M. et al. A comparison of the single and double factor high-risk models for risk assignment of prostate cancer treated with 3D conformal radiotherapy. Int J Radiat Oncol Biol Phys 2004;59:380–5.

8. Kataja V.V., Bergh J. ESMO minimum clinical recommendations for diagnosis, treatment and follow-up of prostate cancer. Ann Oncol 2005;16(Suppl 1):34–6.

9. Heidenreich A., Bastian P.J., Bellmunt J. et al. Guidelines on prostate cancer. European Association of Urology, Arnhem, 2012.

10. Reske S.N., Blumstein N.M., Glatting G. [11C]choline PET/CT imaging in occult local relapse of prostate cancer after radical prostatectomy. Eur J Nucl Med Mol Imaging 2008;35(1):9–17.

11. Apolo A.B., Pandit-Taskar N., Morris M.J. Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med 2008;49:2031–41.

12. National Collaborating Centre for Cancer. Managing relapse after radical treatment. In Prostate cancer: diagnosis and treatment. NICE clinical Guidelines. Cardiff 2008;(58):42–8.

13. Kane C.J., Amling C.L., Johnstone P.A. et al. Limited value of bone scintigraphy and computed tomography in assessing biochemical failure after radical prostatectomy. Urology 2003;61(3):607–11.

14. Dotan Z.A., Bianco F.J. Jr. et al. Pattern of prostate-specific antigen (PSA) failure dictates the probability of a positive bone scan in patients with an increasing PSA after radical prostatectomy. JCO 2005;23(9): 1962–8.

15. Deliveliotis C., Manousakas T., Chrisofos M. et al. Diagnostic efficacy of transrectal ultrasound-guided biopsy of the prostatic fossa in patients with rising PSA following radical prostatectomy. World J Urol 2007;25(): 309–13.

16. Асланиди И.П., Пурсанова Д.М., Мухортова О.В. и др. Роль ПЭТ/КТ с 11С-холином в ранней диагностике прогрессирования рака предстательной железы. Медицинская радиология и радиационная безопасность 2014;59(5):37–54.

17. [Aslanidi I.P., Pursanova D.M., Mukhortova O.V. et al. Role of PET/CT with 11С-Choline in Early Diagnostics of Prostate Cancer Advancement. Meditsinskaya radiologiya i radiotsionnaya bezopasnost’ = Journal of Medical Radiology and Radiation Safety 2014;59(5):37–54. (In Russ.)].

18. Giovacchini G., Picchio M., Coradeschi E. et al. Predictive factors of [11C] Choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 2010;37:301–9.

19. Treglia G., Ceriani L., Sadeghi R. et al. Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis. Clin Chem Lab Med 2014;52(5): 725–33.

20. Rodado-Marina S., Coronado-Poggio M., García-Vicente A.M. et al. Clinical utility of (18) F-fluorocholine positron-emission tomography/computed tomography (PET/ CT) in biochemical relapse of prostate cancer after radical treatment: results of a multicentre study. BJU Int 2015;115(6):874–83.

21. Husarik D.B., Mirabell R., Dubs M. et al. Evaluation of (18F)-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35:253–63.

22. Casamassima F., Masi L., Menichelli C. et al. Efficacy of eradicative radiotherapy for limited nodal metastases detected with choline PET scan in prostate cancer patients. Tumori 2011;97:49–55.

23. Krause B.J., Souvatzoglou M., Tuncel M. et al. The detection rate of [(11)C]Choline- PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35:18–23.

24. Rybalov M., Breeuwsma A.J., Leliveld A.M. et al. Impact of total PSA, PSA doubling time and PSA velocity on detection rates of 11CCholine positron emission tomography in recurrent prostate cancer. World J Urol 2013;31(2):319–23.

25. Beheshti M., Haim S., Zakavi R. et al. Impact of 18 F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. J Nucl Med 2013;54:833–40.

26. Castellucci P., Fuccio C., Nanni C. et al. Influence of trigger PSA and PSA kinetics on 11C-Choline PET/ CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med 2009;50(9):1394–1400.

27. Giovacchini G., Picchio M., Parra R.G. et al. Prostate-specific antigen velocity versus prostate specific antigen doubling time for prediction of 11C choline PET/CT in prostate cancer patients with biochemical failure after radical prostatectomy. Clin Nucl Med 2012;37:325–31.

28. Detti B., Scoccianti S., Franceschini D. et al. Predictive factors of [18F]-Choline PET/CT in 170 patients with increasing PSA after primary radical treatment. J Cancer Res Clin Oncol 2013;139(3):521–8.

29. Cesi F., Castellucci P., Graziani T. et al. 11C-Choline PET/CT detects the site of relapse in the majority of prostate cancer patients showing biochemical recurrence after EBRT. Eur J Nucl Med Mol Imaging 2014;41(5):878–86.

30. Castellucci P., Fuccio C., Rubello D. et al. Is there a role for 11C-Choline PET/CT in the early detection of metastatic disease in surgically treated prostate cancer patients with a mild PSA increase <1.5 ng/ml? Eur J Nucl Med Mol Imaging 2011;38: 55–63.

31. Schillaci O., Calabria F., Tavolozza M. et al. Influence of PSA, PSA velocity and PSA doublingtime on contrast-enhanced 18Fcholine PET/CT detection rate in patients with rising PSA after radical prostatectomy. Eur J Nucl Med Mol Imaging 2012;39:589–96.

32. Beheshti M., Vali R., Waldenberger P. et al. Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET-CT: a comparative study. Eur J Nucl Med Mol Imaging 2008;35:1766–74.

33. Prostate-Specific Antigen Best Practice Statement: 2009 Update. Eur Urol 2012;61:8–10.

34. Roberts S.G., Blute M.L., Bergstralh E.J. et al. PSA doubling time as a predictor of clinical progression after biochemical failure following radical prostatectomy for prostate cancer. Mayo Clin Proc 2001;76:576–81.

35. Giovacchini G., Picchio M., Scattoni V. et al. PSA doubling time for prediction of 11C Choline PET/CT findings in prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 2010;37:1106–16.


Review

For citations:


Aslanidis I.P., Pursanova D.M., Mukhortova O.V., Silchenkov A.V., Roshin D.A., Koryakin A.V., Ivanov S.A., Shirokorad V.I. 11C–Choline PET / CT in the detection of prostate cancer relapse in patients with rising PSA. Cancer Urology. 2015;11(3):79-86. (In Russ.) https://doi.org/10.17650/1726-9776-2015-11-3-79-86

Views: 2098


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X