Genetic predisposition markers for prostate cancer
https://doi.org/10.17650/1726-9776-2015-11-3-16-23
Abstract
Prostate cancer (PC), like most cancers, belongs to multifactorial diseases arising from an interaction between environmental factors and
an individual’s genotype. The paper reviews the literature on the genetic predisposition to PC, which is determined by both rare gene mutations with high penetrance and inherited polymorphic genetic variants with low penetrance. The paper considers the clinical aspects of genetic predisposition to PC, among other factors, the need for male screening for both types of genetic abnormalities to assess the risk of this cancer.
About the Authors
M. D. KanaevaRussian Federation
I. E. Orobtsova
Russian Federation
References
1. Алексеев Б.Я. Гормональная терапия в комбинированном лечении рака предстательной железы. Вместе против рака 2004;(3):35–8. [Alexeyev B.Ya. Hormone Therapy in Combined Treatment of Prostate Cancer. Together Against Cancer (Vmeste Protiv Raka) 2004;(3):35–8. (In Russ.)].
2. Johns L.E., Houlston R.S. A systematic review and meta-analysis of familial prostate cancer risk. BJU 2003(91):789–94.
3. Page W.F., Braun M.M., Partin A.W. et al. Heredity and prostate cancer: a study of World War II veteran twins. Prostate 1997; 33:240–5.
4. Ahlbom A., Lichtenstein P., Malmstroem H. et al. Cancer in twins: genetic and nongenetic familial risk factors. J Natl Cancer Inst 1997;89:287–93.
5. Lichtenstein P., Holm N.V., Verkasalo P.K. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000;343:78–85.
6. Groenberg H., Damber L., Damber J.E. et al. Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 1997;146:552–7.
7. MacInnis R.J., Antoniou A.C., Eeles R.A. et al. Prostate cancer segregation analyses using 4390 families from UK and Australian population-based studies. Genet Epidemiol 2010;34:42–50.
8. Smith J.R., Freije D., Carpten J.D. et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genomewide search. Science 1996:274:1371–4.
9. Carpten J., Nupponen N., Isaacs S. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nature Genet 2002;30:181–4.
10. Xu J., Zheng S.L., Hawkins G.A. et al. Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22–23. Am J Hum Genet 2001;69:341–50.
11. Tavtigian S.V., Simard J., Teng H.F. et al. A strong candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001;27:172–80.
12. Berthon P., Valeri A., Cohen-Akenine A. et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am J Hum Genet 1998;62:1416–24.
13. Xu J., Meyers D., Freije D. et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 1998;20:175–9.
14. Gibbs M., Stanford J.L., McIndoe R.A. et al. Evidence for a rare prostate cancersusceptibility locus at chromosome 1p36. Am J Hum Genet 1999;64:776–87.
15. Berry R., Schroeder J.J., French A.J. et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum 2000;67:82–91.
16. Norris J. D., Chang C.-Y., Wittmann B. M. et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Molec Cell 2009;36:405–16.
17. Ewing C., Ray A., Lange E. et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 2012;366(2):141–9.
18. Xu J., Lange E., Lu L. et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet 2013;132:5–14.
19. MacInnis R., Severi G., Baglietto L. et al. Population-Based Estimate of Prostate Cancer Risk for Carriers of the HOXB13 Missense Mutation G84E. PLOS ONE 2013;8(2):e54727.
20. Chen Z., Greenwood C., Isaacs W.B. et al. The G84E mutation of HOXB13 is associated with increased risk for prostate cancer:results from the REDUCE trial. Carcinogenesis 2013;34:(6):1260–4.
21. Thorsteinsdottir U., Kroon E., Jerome L. et al. Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Molec Cell Biol 2001;21:224–34.
22. Mitra A., Jameson C., Barbachano Y. et al. Over-expression of RAD51 occurs in ggressive prostate cancer. Histopathology 2009:55(6):696–704.
23. Casey G. The BRCA1 and BRCA2 breast cancer genes. Curr Opin Oncol 1997;9(1)88– 93.
24. Kote-Jarai Z., Leongamornlert D., Saunders E. et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: Implications for genetic testing in prostate cancer patients. Br J Cancer 2011;105:1230–4.
25. Leongamornlert D., Mahmud N., Tymrakiewicz M. et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 2012;106:1697–701.
26. Castro E., Goh C., Olmos D. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31(14):1748–56.
27. Gallagher D., Gaudet M., Pal P. et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 2010;16(7):2115–21.
28. Hale V., Weischer M., Park J. CHEK2 1100delC mutation and risk of prostate cancer. Prostate Cancer 2014.
29. Johnson N., Fletcher O., Naceur- Lombardelli C. et al. Interaction between CHEK2*1100delC and other low-penetrance breast-cancer susceptibility genes: a familial study. Lancet 2005;366:1554–7.
30. Casey G., Neville P. J., Plummer S. J. RNASEL arg462gln variant is implicated in up to 13% of prostate cancer cases. Nature Genet 2002;32:581–3.
31. Fesinmeyer M., Kwon E., Fu R. et al. Genetic variation in RNASEL and risk for prostate cancer in a population-based casecontrol study. Prostate 2011;71(14):1538–47.
32. Meyer S., Penney K., Stark J. et al. Genetic variation in RNASEL associated with prostate cancer risk and progression. Carcinogenesis 2010;31(9):1597–603.
33. Schoenfeld J., Margalit D., Kasperzyk J. et al. A single nucleotide polymorphism in inflammatory gene RNASEL predicts outcome after radiation therapy for localized prostate cancer. Clin Cancer Res 2013;19(6):1612–9.
34. Rebbeck T. R., Walker A. H., Zeigler-Johnson C. et al. Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 2000;67:1014–9.
35. Xu B., Tong N., Li J. et al. ELAC2 polymorphisms and prostate cancer risk: a meta-analysis based on 18 case–control studies. Prostate Cancer Prostatic Dis 2010;13(3):270–7.
36. Thiery J.P. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2(6):442–54.
37. Cattaneo F., Venesio T., Molatore S. Functional analysis and case-control study of -160C/A polymorphism in the E-cadherin gene promoter: association with cancer risk. Anticancer Research 2006;26: 4627–32.
38. Li G., Pan T., Guo D., Li L.C. Regulatory variants and disease: the e-cadherin −160C/A SNP as an example. Mol Biol Int 2014; 2014:967565.
39. Wang L., Wang G., Lu C. et al. Contribution of the -160C/A polymorphism in the E-cadherin promoter to cancer risk: a meta-analysis of 47 case-control studies. PLoS One 2012;7(7): article ID e40219.
40. Ingles S., Ross R., Yu M. et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor . J Nat Canc Inst 1997;89(2):166–70.
41. Ross R., Pike M., Coetzee G. et al. Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Canc Res1998;58:4497–504.
42. Coetzee G.A., Ross R.K. Prostate cancer and the androgen receptor [letter]. J Natl Cancer Inst 1994;86:872–3.
43. Giovannucci E., Slampfer M. J., Krithivas K. et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997;94: 3320–3.
44. Hardy D., Scher H., Bogenreider T. et al. Androgen receptor CAG repeal lengths in proslale cancer:correlation with age of onset. J Clin Endocrinol 1996;9:4400–5.
45. Godoy A.S., Chung I., Montecinos V.P. et al. Role of androgen and vitamin D receptors in endothelial cells from benign and malignant human prostate. Am J Physiol Endocrinol Metab 2013;304(11):1131–9.
46. Shui I.M., Mucci L.A., Kraft P. et al. Vitamin d-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: a prospective nested case-control study. J Natl Cancer Inst 2012;104(9):690–9.
47. Xu Y., He B., Pan Y., et al. Systematic review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Tumour Biol 2014;35(5):4153–69. Генетический паспорт — основа индивидуальной и предиктивной медицины. Под ред. В. С. Баранова. СПб.: Изд-во Н-Л, 2009. 528 с. [Genetical Data Sheet: Basis of Individual and Predictive Medicine. Under the editorship of Baranova V.S. St.Petersburg: N-L Publishing House, 2009. 528 p. (In Russ.)].
48. Gong M., Dong W., Shi Z. et al. Genetic polymorphisms of GSTM1, GSTT1, and GSTP1 with prostate cancer risk: a metaanalysis of 57 studies. PLoS One 2012;7(11):e50587.
49. Yang Q., Du J., Yao X. Significant association of glutathione S-transferase T1 null genotype with prostate cancer risk: a metaanalysis of 26,393 subjects. PLoS One 2013;8(1):e53700.
50. Wei B., Zhou Y., Xu Z. et al. GSTP1 Ile105Val polymorphism and prostate cancer risk: evidence from a meta-analysis. PLoS One 2013;8(8):e71640.
51. Yu Z., Li Z., Cai B. et al. Association between the GSTP1 Ile105Val polymorphism and prostate cancer risk: a systematic review nd meta-analysis. Tumour Biol 2013;34(3):1855–63.
52. Huang S., Wu F., Luo M. et al. The glutathione S-transferase P1 341C>T polymorphism and cancer risk: a meta-analysis of 28 case-control studies. PLoS One 2013;8(2):e56722.
53. Xu J., Sun J., Zheng S. Prostate cancer risk-associated genetic markers and their potential clinical utility. Asian J Androl 2013;15:314–22.
Review
For citations:
Kanaeva M.D., Orobtsova I.E. Genetic predisposition markers for prostate cancer. Cancer Urology. 2015;11(3):16-23. (In Russ.) https://doi.org/10.17650/1726-9776-2015-11-3-16-23