СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОТЕОМНЫХ ИССЛЕДОВАНИЙ МАРКЕРОВ РАКА ПОЧКИ
https://doi.org/10.17650/1726-9776-2011-7-4-81-89
Аннотация
Об авторах
С. В. КовалевРоссия
В. Е. Шевченко
Россия
Список литературы
1. Ljungberg B., Cowan N.C., Hanbury D.C. et al. EAU guidelines on renal cell carcinoma: the 2010 update. Eur Urol 2010;58:398– 406.
2. Заридзе Д.Г. Профилактика рака. М.: ИМА-ПРЕСС, 2009.
3. Banks R.E., Craven R.A., Harnden P. et al. Key Clinical issues in renal cancer: a challenges for proteomics. World J Urol 2007;25:37–56.
4. Nickerson M.L., Jaeger E., Shi Y. et al. Improved identification of von Hippel-Lindau gene alternations in clear cell renal tumors. Clin Cancer Res 2008;14(15):4726–34.
5. www.hupo.org
6. www.hppp.org
7. www.hkupp.org
8. Hwa J.S., Park H.J., Jung J.H. et al. Identification of proteins differentially expressed in the conventional renal cell carcinoma by proteomic analysis. J Korean Med Sci 2005;20:450–5.
9. Pieper R., Gatlin C.L., McGrath A.M. et al. Characterization of the human urinary proteome: a method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 2004;4(4):1159−74.
10. Lichtenfels R., Dressler S.P., Zobawa M. et al. Systematic comparative protein expression profiling of clear cell renal cell carcinoma: a pilot study based on the separation of tissue specimens by twodimensional gel electrophoresis. Mol Cell Proteomics 2009;8(12):2827−42.
11. Tolson J., Bogumil R., Brunst E. et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab Invest 2004;84:845–56.
12. Siu K.W., DeSouza L.V., Scorilas A. et al. Differential protein expressions in renal cell carcinoma: new biomarker discovery by mass spectrometry. J Proteome Res 2009; 8(8):3797−807.
13. Haffey W.D., Mikhaylova O., Meller J. et al. iTRAQ proteomic identification of pVHL-dependent and -independent targets of Egln1 prolyl hydroxylase knockdown in renal carcinoma cells. Adv Enzyme Regul 2009;49(1):121−32.
14. Lichtenfels R., Kellner R., Atkins D. et al. Identification of metabolic enzymes in renal cell carcinoma utilizing PROTEOMEX analyses. Biochim Biophys Acta 2003; 1646(1−2):21−31.
15. Kumar S., Tsai C.J., Nussinov R. Temperature range of thermodynamic stability for the native state of reversible two-state proteins. Biochemistry 2003;42(17):4864−73.
16. Rogers M.A., Clarke P., Noble J. et al. Proteomic profiling of urinary proteins in renal cancer by surface enhanced laser desorption ionization and neural-network analysis: identification of key issues affecting potential clinical utility. Cancer Res 2003; 63(20):6971−83.
17. Bosso N., Chinello C., Picozzi S.C. et al. Human urine biomarkers of renal cell carcinoma evaluated by ClinProt. Proteomics Clin Appl 2008;2(7−8):1036−46.
18. Wu D.L., Zhang W.H., Wang W.J. et al. Proteomic evaluation of urine from renal cell carcinoma using SELDI-TOF-MS and tree analysis pattern. Technol Cancer Res Treat 2008;7(3):155−60.
19. Sim S.H., Cairns D.A., Perkins D.N. et al. Changes in the urinary proteome postoperatively in renal cancer patients — a reflection of tumour or kidney removal? Proteomics Clin Appl 2009;3(9):1112−22.
20. Omenn G.S., States D.J., Adamski M. et al. Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005;5(13):3226−45.
21. Hara T., Honda K., Ono M. et al. Identification of 2 serum biomarkers of renal cell carcinoma by surface enhanced laser desorption/ionization mass spectrometry. J Urol 2005;174(4):1213−7.
22. Rossi L., Martin B.M., Hortin G.L. et al. Inflammatory protein profile during systemic high dose interleukin-2 administration. Proteomics 2006;6:709–20.
23. Panelli M.C., White R., Foster M. et al. Forecasting the cytokine storm following systemic interleukin (IL)-2 administration. J Transl Med 2004;2:17−30.
24. Sabatino M., Kim-Schulze S., Panelli M.C. et al. Serum vascular endothelial growth factor and fibronectin predict clinical response to high-dose interleukin-2 therapy. J Clin Oncol 2009;27(16):2645−52.
25. Vermaat J.S., van der Tweel I., Mehra N. et al. Two-protein signature of novel serological markers apolipoprotein-A2 and serum amyloid alpha predicts prognosis in patients with metastatic renal cell cancer and improves the currently used prognostic survival models. Ann Oncol 2010;21(7):1472−81.
26. Xu G., Xiang C.Q., Lu Y. et al. SELDITOF-MS-based serum proteomic screening in combination with CT scan distinguishes renal cell carcinoma from benign renal tumors and healthy persons. Technol Cancer Res Treat 2009;8(3):225−30.
27. Teng P.N., Hood B.L., Sun M. et al. Differential proteomic analysis of renal cell carcinoma tissue interstitial fluid. J Proteome Res 2011;10(3):1333−42.
28. Minamida S., Iwamura M., Kodera Y. et al. 14-3-3 Protein beta/alpha as a urinary biomarker for renal cell carcinoma: proteomic analysis of cyst fluid. Anal Bioanal Chem 2011;401(1):245−52.
29. Klade C.S., Voss T., Krystek E. et al. Identification of tumor antigens in renal cell carcinoma by serological proteome analysis. Proteomics 2001; 1(7):890−8.
30. Kellner R., Lichtenfels R., Atkins D. et al. Targeting of tumor associated antigens in renal cell carcinoma using proteome-based analysis and their clinical significance. Proteomics 2002;2(12):1743−51.
31. Unwin R.D., Harnden P., Pappin D. et al. Serological and proteomic evaluation of antibody responses in the identification of tumor antigens in renal cell carcinoma. Proteomics 2003;3:45–55.
32. Kruger T., Schoor O., Lemmel C. et al. Lessons to be learned from primary renal cell carcinomas: novel tumor antigens and HLA ligands for immunotherapy. Cancer Immunol Immunother 2005;54:826–36.
33. Seliger B., Fedorushchenko A., Brenner W. et al. Ubiquitin COOH-terminal hydrolase 1: a biomarker of renal cell carcinoma associated with enhanced tumor cell proliferation and migration. Clin Cancer Res 2007;13(1):27−37.
34. Seliger B., Menig M., Lichtenfels R. et al. Identification of markers for the selection of patients undergoing renal cell carcinomaspecific immunotherapy. Proteomics 2003;3(6):979−90.
35. Craven R.A., Hanrahan S., Totty N. et al. Proteomic identification of a role for the von Hippel Lindau tumour suppressor in changes in the expression of mitochondrial proteins and septin 2 in renal cell carcinoma. Proteomics 2006;6(13):3880−93.
36. Szymańska K., Moore L.E., Rothman N. et al. TP53, EGFR, and KRAS mutations in relation to VHL inactivation and lifestyle risk factors in renal-cell carcinoma from central and eastern Europe. Cancer Lett 2010; 293(1):92−8.
37. Nakamura E., Abreu-e-Lima P., Awakura Y. et al. Clusterin is a secreted marker for a hypoxia-inducible factor-independent function of the von Hippel-Lindau tumor suppressor protein. Am J Pathol 2006;168(2):574−84.
38. Aggelis V., Craven R.A., Peng J. et al. Proteomic identification of differentially expressed plasma membrane proteins in renal cell carcinoma by stable isotope labeling of a von Hippel-Lindau transfectant cell line model. Proteomics 2009;9(8):2118−30.
39. Shi T., Dong F., Liou L.S. et al. Differential protein profiling in renal-cell carcinoma. Mol Carcinog 2004;40(1):47−61.
40. Perego R.A., Bianchi C., Corizzato M. et al. Primary cell cultures arising from normal kidney and renal cell carcinoma retain the proteomic profile of corresponding tissues. J Proteome Res 2005;4(5):1503−10.
41. Craven R.A., Stanley A.J., Hanrahan S. et al. Proteomic analysis of primary cell lines identifies protein changes present in renal cell carcinoma. Proteomics 2006;6(9):2853−64.
42. Adam P.J., Terrett J.A., Steers G. et al. CD70 (TNFSF7) is expressed at high prevalence in renal cell carcinomas and is rapidly internalised on antibody binding. Br J Cancer 2006;95(3):298−306.
43. Alban A., David S.O., Bjorkesten L. et al. A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 2003;3(1):36−44.
44. Sarto C., Marocchi A., Sanchez J.C. et al. Renal cell carcinoma and normal kidney protein expression. Electrophoresis 1997; 18(3−4):599−604.
45. Zhuang Z., Huang S., Kowalak J.A. et al. From tissue phenotype to proteotype: sensitive protein identification in microdissected tumor tissue. Int J Oncol 2006;28(1):103−10.
46. Bloom G.C., Eschrich S., Zhou J.X. et al. Elucidation of a protein signature discriminating six common types of adenocarcinoma. Int J Cancer 2007; 120(4):769−75.
47. Poznanović S., Wozny W., Schwall G.P. et al. Differential radioactive proteomic analysis of microdissected renal cell carcinoma tissue by 54 cm isoelectric focusing in serial immobilized pH gradient gels. J Proteome Res 2005;4(6):2117−25.
48. Seliger B., Lichtenfels R., Atkins D. et al. Identification of fatty acid binding proteins as markers associated with the initiation and/or progression of renal cell carcinoma. Proteomics 2005;5(10):2631−40.
49. Lichtenfels R., Dressler S.P., Zobawa M. et al. Systematic comparative protein expression profiling of clear cell renal cell carcinoma: a pilot study based on the separation of tissue specimens by twodimensional gel electrophoresis. Mol Cell Proteomics 2009;8(12):2827−42.
50. Kim D.S., Choi Y.P., Kang S. et al. Panel of candidate biomarkers for renal cell carcinoma. J Proteome Res 2010;9(7):3710−9.
51. Okamura N., Masuda T., Gotoh A. et al. Quantitative proteomic analysis to discover potential diagnostic markers and therapeutic targets in human renal cell carcinoma. Proteomics 2008;8(15):3194−203.
52. Zimmermann U., Balabanov S., Giebel J. et al. Increased expression and altered location of annexin IV in renal clear cell carcinoma: a possible role in tumour dissemination. Cancer Lett 2004;209(1):111−8.
53. Alchanati I., Nallar S.C., Sun P. et al. A proteomic analysis reveals the loss of expression of the cell death regulatory gene GRIM-19 in human renal cell carcinomas. Oncogene 2006; 25(54):7138-7147.
54. Castronovo V., Waltregny D., Kischel P. et al. A chemical proteomics approach for the identification of accessible antigens expressed in human kidney cancer. Mol Cell Proteomics 2006;5(11):2083−91.
55. Dorai T., Sawczuk I.S., Pastorek J. et al. The role of carbonic anhydrase IX overexpression in kidney cancer. Eur J Cancer 2005;41(18):2935−47.
56. von Eggeling F., Junker K., Fiedle W. et al. Mass spectrometry meets chip technology: a new proteomic tool in cancer research? Electrophoresis 2001;22(14):2898−902.
57. Junker K., Gneist J., Melle C. et al. Identification of protein pattern in kidney cancer using ProteinChip arrays and bioinformatics. Int J Mol Med 2005; 15(2):285−90.
58. Johann D.J. Jr., Wei B.R., Prieto D.A. et al. Combined blood/tissue analysis for cancer biomarker discovery: application to renal cell carcinoma. Anal Chem 2010;82(5):1584−8.
59. Minamida S., Iwamura M., Kodera Y. et al. Profilin 1 overexpression in renal cell carcinoma. Int J Urol 2011;18(1):63−71.
Рецензия
Для цитирования:
Ковалев С.В., Шевченко В.Е. СОВРЕМЕННОЕ СОСТОЯНИЕ ПРОТЕОМНЫХ ИССЛЕДОВАНИЙ МАРКЕРОВ РАКА ПОЧКИ. Онкоурология. 2011;7(4):81-89. https://doi.org/10.17650/1726-9776-2011-7-4-81-89
For citation:
Kovalev S.V., Shevchenko V.E. THE STATE-OF-THE-ART OF PROTEOMIC STUDIES OF MARKERS FOR KIDNEY CANCER (A REVIEW OF LITERATURE). Cancer Urology. 2011;7(4):81-89. (In Russ.) https://doi.org/10.17650/1726-9776-2011-7-4-81-89