Anatomical aspects of vessel-sparing radiation therapy for prostate cancer
https://doi.org/10.17650/1726-9776-2024-20-4-33-43
Abstract
Aim. To assess the impact of topographic anatomy of the critical structures of the penile vessels on the implementation of vessel-sparing radiation therapy for prostate cancer.
Materials and methods. The study included 70 patients with verified prostate cancer. All patients underwent topometric computed tomography and magnetic resonance imaging. The target (prostate gland and proximal third of the seminal vesicles), standard critical structures (rectum, bladder, femoral heads), as well as critical vascular structures responsible for erectile function were delineated (bulb of the penis, crura of the corpus cavernosum, internal pudendal artery). The obtained images were subjected to volumetric and spatial analysis using the Eclipse 4.0 (Varian Medical System) planning system.
Results. In all 70 patients, adequate visualization of all anatomical structures was achieved. The mean distance between the apex and the penile bulb was 1.35 ± 0.47 (0.35–2.41) cm. In the majority of patients, this index exceeded 1 cm: up to 1 cm – 18 (25.7 %), between 1.1 and 1.5 – 27 (38.6 %), and more than 1.51 cm – 25 (35.7 %). The apical-cavernous distance on the right and left did not differ significantly: 2.05 ± 0.45 (1.12–3.00) and 2.09 ± 0.44 (1.16–3.02) cm, respectively. The internal pudendal artery in the projection of the irradiated volume (prostate gland and proximal third of seminal vesicles) is located at an average distance of 2.5 cm (apex gland) to 4.3 cm (basal parts of the prostate). Analysis (Spearman’s correlation coefficient) did not reveal a significant relationship between the assessed spatial parameters and prostate volume and body mass index.
Conclusion. The topographic relationship between the irradiated volumes and erectile vascular structures makes it possible to implement vessel-sparing radiation therapy protocol in the majority of cases (about 75 %).
About the Authors
R. V. NovikovRussian Federation
Roman V. Novikov.
68 Leningradskaya St., Pesochnyy, Saint Petersburg 197758; 6 Akademika Lebedeva St., Saint Petersburg 194044
Competing Interests:
None
G. A. Lyasovich
Russian Federation
2 Kultury Prospekt, Saint Petersburg 194291
Competing Interests:
None
O. I. Ponomareva
Russian Federation
68 Leningradskaya St., Pesochnyy, Saint Petersburg 197758
Competing Interests:
None
V. K. Karandashov
Russian Federation
6 Akademika Lebedeva St., Saint Petersburg 194044
Competing Interests:
None
I. A. Burovik
Russian Federation
6 Akademika Lebedeva St., Saint Petersburg 194044
Competing Interests:
None
S. A. Tyatkov
Russian Federation
6 Akademika Lebedeva St., Saint Petersburg 194044
Competing Interests:
None
A. V. Kulish
Russian Federation
6 Akademika Lebedeva St., Saint Petersburg 194044
Competing Interests:
None
V. V. Protoshchak
Russian Federation
6 Akademika Lebedeva St., Saint Petersburg 194044
Competing Interests:
None
S. N. Novikov
Russian Federation
68 Leningradskaya St., Pesochnyy, Saint Petersburg 197758
Competing Interests:
None
References
1. Nguyen K.A., Lee A., Patel S.A. et al. Trends in use and comparison of stereotactic body radiation therapy, brachytherapy, and dose- escalated external beam radiation therapy for the management of localized, intermediate-risk prostate cancer. JAMA Netw Open 2020;3(9):e2017144. DOI: 10.1001/jamanetworkopen.2020.17144
2. Numakura K., Kobayashi M., Muto Y. et al. The current trend of radiation therapy for patients with localized prostate cancer. Curr Oncol 2023;30(9):8092–110. DOI: 10.3390/curroncol30090587
3. Spratt D.E., Lee J.Y., Dess R.T. et al. Vessel-sparing radiotherapy for localized prostate cancer to preserve erectile function: a single-arm phase 2 trial. Eur Urol 2017;72(4):617–24. DOI: 10.1016/j.eururo.2017.02.007
4. Samlali H., Udrescu C., Lapierre A. et al. Prospective evaluation of a specific technique of sexual function preservation in external beam radiotherapy for prostate cancer. Br J Radiol 2017;90(1078):20160877. DOI: 10.1259/bjr.20160877
5. Seymour Z.A., Pinkawa M., Daignault-Newton S. et al. A pooled long-term follow-up after radiotherapy for prostate cancer with and without a rectal hydrogel spacer: impact of hydrogel on decline in sexual quality of life. Front Oncol 2023;13:1239104. DOI: 10.3389/fonc.2023.1239104
6. Achard V., Zilli T., Lamanna G. et al. Urethra-sparing prostate cancer stereotactic body radiotherapy: sexual function and radiation dose to the penile bulb, the crura, and the internal pudendal arteries from a randomized phase 2 trial. Int J Radiat Oncol Biol Phys 2024;119(4):1137–46. DOI: 10.1016/j.ijrobp.2023.12.037
7. McLaughlin P.W., Troyer S., Berri S. et al. Functional anatomy of the prostate: implications for treatment planning. Int J Radiat Oncol Biol Phys 2005;63(2):479–91. DOI: 10.1016/j.ijrobp.2005.02.036
8. McLaughlin P.W., Narayana V., Meirovitz A. et al. Vessel-sparing prostate radiotherapy: dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI. Int J Radiat Oncol Biol Phys 2005;61(1):20–31. DOI: 10.1016/j.ijrobp.2004.04.070
9. Novikov R.V., Ponomareva O.I., Litinskiy S.S., Novikov S.N. Anatomical and topographical justification of “vessel-sparing” radiation radiation therapy of prostate cancer. Eksperimentalnaya i klinicheskaya urologiya = Experimental and Clinical Urology 2020; (2):84–91. (In Russ.). DOI: 10.29188/2222-8543-2020-12-2-84-91
10. Novikov R.V., Novikov S.N., Ilyin N.D. et al. Method for visual- izing the internal pudendal artery during radiotherapy of prostate cancer. Patent RU 2 756 251 C1. 2021. (In Russ.).
11. Li L., Wu K., Liu Y. et al. Angiographic evaluation of the internal iliac artery branch in pelvic tumour patients: diagnostic performance of multislice computed tomography angiography. Oncol Lett 2019; 17(5):4305–12. DOI: 10.3892/ol.2019.10084
12. Mulhall J., Ahmed A., Parker M., Mohideen N. The hemodynam- ics of erectile dysfunction following external beam radiation for prostate cancer. J Sex Med 2005;2(3):432–7. DOI: 10.1111/j.1743-6109.2005.20362.x
13. Henry B.M., Pękala P.A., Vikse J. et al. Variations in the arterial blood supply to the penis and the accessory pudendal artery: a meta- analysis and review of implications in radical prostatectomy. J Urol 2017;198(2):345–53. DOI: 10.1016/j.juro.2017.01.080
14. Langen K.M., Willoughby T.R., Meeks S.L. et al. Observations on real-time prostate gland motion using electromagnetic tracking. Int J Radiat Oncol Biol Phys 2008;71(4):1084–90. DOI: 10.1016/j.ijrobp.2007.11.054
15. Cuccia F., Mazzola R., Nicosia L. et al. Impact of hydrogel peri-rectal spacer insertion on prostate gland intra-fraction motion during 1.5 T MR-guided stereotactic body radiotherapy. Radiat Oncol 2020;15(1):178. DOI: 10.1186/s13014-020-01622-3
16. Sato H., Kato T., Motoyanagi T. et al. Preliminary analysis of pros- tate positional displacement using hydrogel spacer during the course of proton therapy for prostate cancer. J Radiat Res 2021;62(2):294–9. DOI: 10.1093/jrr/rraa115
17. Novikov R.V., Novikov S.N., Protoshchak V.V. et al. Radiation-induced erectile dysfunction in prostate cancer patients: up-to-date view on pathogenesis. Vestnik rentgenologii i radiologii = Journal of Radiology and Nuclear Medicine 2021;102(1):66–74. (In Russ.). DOI: 10.20862/0042-4676-2021-102-1-66-74
18. Teunissen F.R., van der Voort van Zyp J.R.N., Wortel R.C. Advances in erectile function-preserving radiotherapy for prostate cancer. J Sex Med 2023;20(2):121–3. DOI: 10.1093/jsxmed/qdac015
19. Lei Y., Wang T., Roper J. et al. Automatic segmentation of neurovascular bundle on MRI using deep learning based topological modulated network. Med Phys 2023;50(9):5479–88. DOI: 10.1002/mp.16378
20. Teunissen F.R., Wortel R.C., Hes J. et al. Adaptive magnetic resonance- guided neurovascular-sparing radiotherapy for preservation of erectile function in prostate cancer patients. Phys Imaging Radiat Oncol 2021;20:5–10. DOI: 10.1016/j.phro.2021.09.002
21. Teunissen F.R., van der Voort van Zyp J.R.N., Verkooijen H.M., Wortel R.C. Neurovascular-sparing MR-guided adaptive radiotherapy in prostate cancer; defining the potential population for erectile function-sparing treatment. J Sex Med 2022;19(7):1196–200. DOI: 10.1016/j.jsxm.2022.04.006
22. Hwang M.E., Mayeda M., Shaish H. et al. Dosimetric feasibility of neurovascular bundle-sparing stereotactic body radiotherapy with periprostatic hydrogel spacer for localized prostate cancer to preserve erectile function. Br J Radiol 2021;94(1119):20200433. DOI: 10.1259/bjr.20200433
23. Alsaid B., Bessede T., Diallo D. et al. Division of autonomic nerves within the neurovascular bundles distally into corpora cavernosa and corpus spongiosum components: immunohistochemical confirmation with three-dimensional reconstruction. Eur Urol 2011;59(6):902–9. DOI: 10.1016/j.eururo.2011.02.031
24. Hamstra D.A., Mariados N., Sylvester J. et al. Sexual quality of life following prostate intensity modulated radiation therapy (IMRT) with a rectal/prostate spacer: Secondary analysis of a phase 3 trial. Pract Radiat Oncol 2018;8(1):e7–15. DOI: 10.1016/j.prro.2017.07.008
25. Gayvoronsky I.V., Mazyrenko R.G. Sources of penis blood supply and their anastomoses. Vestnik Sankt-Peterburgskogo universiteta = Vestnik of Saint Petersburg University 2012;11(2):109–15. (In Russ.).
26. Novikov R.V., Novikov S.N. Technologies to reduce radiation toxicity in prostate cancer patients: spacers – a simple and effective solution. Onkourologiya = Cancer Urology 2021;17(3):64–77. (In Russ.). DOI: 10.17650/1726-9776-2021-17-3-64-77
Review
For citations:
Novikov R.V., Lyasovich G.A., Ponomareva O.I., Karandashov V.K., Burovik I.A., Tyatkov S.A., Kulish A.V., Protoshchak V.V., Novikov S.N. Anatomical aspects of vessel-sparing radiation therapy for prostate cancer. Cancer Urology. 2024;20(4):33-43. (In Russ.) https://doi.org/10.17650/1726-9776-2024-20-4-33-43