Preview

Cancer Urology

Advanced search

Androgen receptor signaling mechanism in prostate cancer: resistance to antiandrogen therapy and association with DNA repair genes

https://doi.org/10.17650/1726-9776-2023-19-1-85-101

Abstract

Background. Metastatic castration-resistant prostate cancer remains a complex problem due to patients' previous treatments and limited selection of subsequent therapies. While 2nd generation antiandrogens are initially effective, resistance to them is not an exceptional event. Mechanisms depending on androgen receptor and independent of it have been described. A special focus is on mutations in DNA repair genes, particularly genes involved in homologous recombination repair (HRR) as a possible cause of somatic genetic abnormalities specifically in progressive metastatic disease. However, data on the effect of the HRR defect on the effectiveness of antiandrogen therapy for prostate cancer are very limited, which requires additional clinical studies.

Aim. To evaluate the effect of clinical, morphological, molecular and genetic factors on the effectiveness of enzalutamide antiandrogen therapy in patients with prostate cancer and known mutations in DNA repair genes involved in HRR and mismatch repair.

Materials and methods. The study was performed at the Clinical Oncological Dispensary No. 1 (Krasnodar). Retrospective analysis of clinical and morphological parameters of 54 patients with prostate cancer who received enzalutamide antiandrogen therapy and with known status of germ line and somatic mutations of HRR DNA repair genes (BRCA1, BRCA2, ATM, BARD, BRIP1, CDK12, CHEK1, CHEK2, PALB2, RAD51B, RAD51C, RAD54L, FANCL) and microsatellite instability in immunohistochemical determination of mismatch repair deficit was performed. Statistical analysis was performed using IBM SPSS Statistics v.22 software.

Results and conclusion. In 17 of 54 patients, pathogenic germline and somatic mutations of HRR genes were detected: 7 mutations in BRCA2 gene, 4 - in CHEK2, 2 - in BRCA1, 2 - in CDK12, 1 - in BRIP1 and 1 - in ATM. It was shown that in the group of patients with metastatic castration-resistant prostate cancer, histological grade per the International Society of Urological Pathology (ISUP) G2 (total Gleason score 7 (3 + 4)) is significantly associated with the absence of HRR mutation, and grade G3 (total Gleason score 7 (4 + 3)) was associated with HRR mutations (р <0.05). Increase in prostate-specific antigen (PSA) level/biochemical progression 12-16 weeks after enzalutamide therapy start was significantly associated with metastatic castration-resistant prostate cancer without HRR mutations (р <0.05). In case of tumor response to enzalutamide therapy, decrease in PSA level did not depend on the age of disease onset, differentiation grade, primary advancement, previous docetaxel treatment, and presence of HRR mutation. Cox multivariate regression test showed that prescription of docetaxel before enzalutamide increased the risk of PSA-progression (hazard ratio (HR) 5.160; 95 % confidence interval (CI) 1.549-17.189; р = 0.008) and radiographic progression (HR 5.161; 95 % CI 1.550-17.187; р = 0.008). Progression risk decreased with increased level of PSA decrease 12-16 weeks after enzalutamide therapy start: for PSA decrease >30 % HR 0.150; 95 % CI 0.040-0.570; р = 0.005; for PSA decrease >50 % HR 0.039; 95 % CI 0.006-0.280; р = 0.001; for PSA decrease >90 % HR 0.116; 95 % CI 0.036-0.375; р = 0.000. Presence of HRR mutation, age <58 years, primary metastatic disease and poorly differentiated morphology did not affect duration without PSA-progression (p >0.05). Kaplan-Meier curves showed a trend towards increased time to development of castration resistance in the group of primary early cancer (Breslow р = 0.06; Tarone-Ware р = 0.062). Subgroup analysis showed that in the cohort of patients with castration-resistant prostate cancer (n = 48), absence of HRR mutation in patients who previously received docetaxel therapy increases time to PSA-progression compared to patients with mutations (log-rank р <0.05).

About the Authors

A. I. Stukan
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar region; Kuban State Medical University, Ministry of Health of Russia
Russian Federation

Anastasiya I. Stukan.

146 Dimitrova St., Krasnodar 350040; 4 Mitrofana Sedina St., Krasnodar 350063


Competing Interests:

None



A. Yu. Goryainova
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar region; Kuban State Medical University, Ministry of Health of Russia
Russian Federation

146 Dimitrova St., Krasnodar 350040; 4 Mitrofana Sedina St., Krasnodar 350063


Competing Interests:

None



M. M. Grigoryan
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar region
Russian Federation

146 Dimitrova St., Krasnodar 350040


Competing Interests:

None



V. F. Kutyan
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar region
Russian Federation

146 Dimitrova St., Krasnodar 350040


Competing Interests:

None



V. S. Zhdanov
Clinical Oncological Dispensary No. 1, Ministry of Health of Krasnodar region
Russian Federation

146 Dimitrova St., Krasnodar 350040


Competing Interests:

None



T. Yu. Semiglazova
N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia; I.I. Mechnikov North-West State Medical University, Ministry of Health of Russia
Russian Federation

68 Leningradskaya St., Pesochnyy, Saint Petersburg 197758; 41 Kirochnaya St., Saint Petersburg 191015


Competing Interests:

None



E. N. Imyanitov
N.N. Petrov National Medical Research Center of Oncology, Ministry of Health of Russia; I.I. Mechnikov North-West State Medical University, Ministry of Health of Russia; Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
Russian Federation

68 Leningradskaya St., Pesochnyy, Saint Petersburg 197758; 41 Kirochnaya St., Saint Petersburg 191015; 2 Litovskaya St., Saint Petersburg 194100


Competing Interests:

None



References

1. Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71(3):209-49. DOI: 10.3322/caac.21660

2. Sartor O., de Bono J.S. Metastatic prostate cancer. N Engl J Med 2018;378(17):1653-4. DOI: 10.1056/NEJMra1803343

3. Beer T.M., Armstrong A.J., Rathkopf D.E. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014;371(5):424-33. DOI: 10.1056/NEJMoa1405095

4. Scher H.I., Fizazi K., Saad F. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367(13):1187-97. DOI: 10.1056/NEJMoa1207506

5. Conteduca V., Wetterskog D., Sharabiani M.T.A. et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol 2017;28(7):1508-16. DOI: 10.1093/annonc/mdx155

6. Antonarakis E.S., Lu C., Wang H. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014;371(11):1028-38. DOI: 10.1056/NEJMoa1315815

7. Armstrong A.J., Halabi S., Luo J. et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the prophecy study. J Clin Oncol 2019;37(13):1120-9. DOI: 10.1200/JCO.18.01731

8. Liu C., Lou W., Zhu Y. et al. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res 2015;75(7):1413-22. DOI: 10.1158/0008-5472.CAN-14-3080

9. Crona D.J., Whang Y.E. Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance. Cancers 2017;9(6):67. DOI: 10.3390/cancers9060067

10. Guedes L.B., Morais C.L., Almutairi F. et al. Analytic valida of RNA in situ hybridization (RISH) for AR and AR-V7 exp ression in human prostate cancer. Clin Cancer Res 2016;22(18):4651-63. DOI: 10.1158/1078-0432.CCR-16-0205

11. Salma B.S., Varadha B.V., Hannelore V.H. et al. Novel insights in cell cycle dysregulation during prostate cancer progression. Endocr Relat Cancer 2021;28(6):R141-55. DOI: 10.1530/ERC-20-0517

12. Mcnair C., Urbanuccia A., Comstock C.E. et al. Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene 2017;36(12):1655-68. DOI: 10.1038/onc.2016.334

13. Schiewer M.J., Augello M.A., Knudsen K.E. The AR dependent cell cycle: mechanisms and cancer relevance. Mol Cell Endocrinol 2012;352(1-2):34-45. DOI: 10.1016/j.mce.2011.06.033

14. Gordon V., Bhadel S., Wunderlich W. et al. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 2010;24(12):2267-80. DOI: 10.1210/me.2010-0238

15. Chen S., Gulla S., Cai C., Balk S.P. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 2012;287(11):8571-83. DOI: 10.1074/jbc.m111.325290

16. Koryakina Y., Knudsen K.E., Gloeli D. Cell-cycle-dependent regulation of androgen receptor function. Endocr Relat Cancer 2015;22(2):249-64. DOI: 10.1530/ERC-14-0549

17. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate. Cancer Cell 2015;163(4):1011-25. DOI: 10.1158/1538-7445.am2016-133

18. Ren S., Wei G.H., Liu D. et al. Wholegenome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol 2018;73(3):322-39. DOI: 10.21236/ada613308

19. Fraser M., Sabelnykova V.Y., Yamaguchi T.N. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 2017;541(7637):359-64. DOI: 10.1016/j.juro.2017.09.039

20. Bangma C.H., Roobol M.J. Defining and predicting indolent and low risk prostate cancer. Crit Rev Oncol Hematol 2012;83(2):235-41. DOI: 10.1016/j.critrevonc.2011.10.003

21. Irshad S., Bansal M., Castillo-Martin M. et al. A molecular signature predictive of indolent prostate cancer. Sci Transl Med 2013;5(202):202ra122. DOI: 10.1126/scitranslmed.3006408

22. Kamoun A., Cancel-Tassin G., Fromont G. et al. Comprehensive molecular classification of localized prostate adenocarcinoma reveals a tumour subtype predictive of non-aggressive disease. Ann Oncol 2018;29(8):1814-21. DOI: 10.1093/annonc/mdy224

23. Bancroft E.K., Page E.C., Castro E. et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the Impact study. Eur Urol 2014;66(3):489-99. DOI: 10.1126/scitranslmed.3006408

24. Zhang W., Van Gent D.C., Incrocci L. et al. Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis 2020;23(1):24-37. DOI: 10.1038/s41391-019-0153-2

25. Hussain M., Fizazi K., Saad F. et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med 2018;378(26):2465-74. DOI: 10.1056/NEJMoa1800536

26. Edwards J., Krishna N.S., Grigor K.M., Bartlett J.M.S. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 2003;89(3):552-6. DOI: 10.1038/sj.bjc.6601127

27. Romanel A., Gasi Tandefelt D., Conteduca V. et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med 2015;7(312):re10. DOI: 10.1126/scitranslmed.aac9511

28. Tucci M., Zichi C., Buttigliero C. et al. Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. Onco Targets Ther 2018;11:7353-68. DOI: 10.2147/OTT.S153764

29. Teply B.A., Wang H., Luber B. et al. Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol 2018;19(1):76-86. DOI: 10.1016/S1470-2045(17)30906-3

30. Joseph J.D., Lu N., Qian J. et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 2013;3(9):1020-9. DOI: 10.1158/2159-8290.CD-13-0226

31. Balbas M.D., Evans M.J., Hosfield D.J. et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife 2013;2:e00499. DOI: 10.7554/elife.00499

32. Lallous N., Volik S.V., Awrey S. et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 2016;17(1):10. DOI: 10.1186/s13059-015-0864-1

33. Hu R., Dunn T.A., Wei S. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009;69(1):16-22. DOI: 10.1158/0008-5472.CAN-08-2764

34. Zhang X., Morrissey C., Sun S. et al. Androgen receptor variants occur frequently in castration resistant prostate cancer metastases. PLoS One 2011;6(11):e27970. DOI: 10.1371/journal.pone.0027970

35. Ware K.E., Garcia-Blanco M.A., Armstrong A.J., Dehm S.M. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer 2014;21(4):T87-103. DOI: 10.1530/erc-13-0470

36. Hu R., Lu C., Mostaghel E.A. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012;72(14):3457-62. DOI: 10.1158/0008-5472.CAN-11-3892

37. Sq T., Kwan E., Fettke H. AR-V7 and AR-V9 expression is not predictive of response to AR-axis targeting agents in metastatic castration-resistant prostate cancer. Cancer Res 2018;78(13):2593. DOI: 10.1158/1538-7445.am2018-2593

38. Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011;32(1):81-151. DOI: 10.1210/er.2010-0013

39. Cai C., Balk S.P. Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr Relat Cancer 2011;18(5):R175-82. DOI: 10.1530/ERC-10-0339

40. Galletti G., Leach B.I., Lam L., Tagawa S.T. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017;57:16-27. DOI: 10.1016/j.ctrv.2017.04.008

41. Stanbrough M., Bubley G.J., Ross K. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006;66(5):2815-25. DOI: 10.1158/0008-5472.CAN-05-4000

42. Puhr M., Hoefer J., Eigentler A. et al. The glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved antiandrogen therapy. Clin Cancer Res 2018;24(4):927-38. DOI: 10.1158/1078-0432.ccr-17-0989

43. Arora V.K., Schenkein E., Murali R. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013;155(6):1309-22. DOI: 10.1016/j.cell.2013.11.012

44. Venkitaraman R., Lorente D., Murthy V. et al. A randomised phase 2 trial of dexamethasone versus prednisolone in castration-resistant prostate cancer. Eur Urol 2015;67(4):673-9. DOI: 10.1016/j.eururo.2014.10.004

45. Akamatsu S., Inoue T., Ogawa O., Gleave M.E. Clinical and mo-lecular features of treatment-related neuroendocrine prostate cancer. Int J Urol 2018;25(4):345-51. DOI: 10.1111/iju.13526

46. Flechon A., Pouessel D., Ferlay C. et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann Oncol 2011;22(11):2476-81. DOI: 10.1093/annonc/mdr004

47. Culine S., El Demery M., Lamy P.J. et al. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers. J Urol 2007;178(3 Pt 1): 844-8. DOI: 10.1016/j.juro.2007.05.044

48. McKay R.R., Kwak L., Crowdis J.P. Phase II multicenter study of enzalutamide in metastatic castration-resistant prostate cancer to identify mechanisms driving resistance. Clin Cancer Res 2021;27(13):3610-9. DOI: 10.1158/1078-0432.CCR-20-4616

49. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74. DOI: 10.1016/j.cell.2011.02.013

50. Ceccaldi R., Rondinelli B., D'Andrea A.D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 2015;26(1):52-64. DOI: 10.1016/j.tcb.2015.07.009

51. Bhattacharjee S., Nandi S. Choices have consequences: The nexus between DNA repair pathways and genomic instability in cancer. Clin Transl 2016;5(1):45. DOI: 10.1186/s40169-016-0128-z

52. Hustedt N., Durocher D. The control of DNA repair by the cell cycle. Nat Cell Biol 2016;19(1):1-9. DOI: 10.1038/ncb3452

53. Jeggo P.A., Pearl L.H., Carr A.M. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer 2016;16(1):35-42. DOI: 10.1038/nrc.2015.4

54. Roos W.P., Thomas A.D., Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 2016;16(1):20-33. DOI: 10.1038/nrc.2015.2

55. Schiewer M.J., Knudsen K.E. DNA damage response in prostate cancer. Cold Spring Harb Perspect Med 2019;9(1):a030486. DOI: 10.1101/cshperspect.a030486

56. Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215-28. DOI: 10.1016/j.cell.2015.05.001

57. Annala M., Vandekerkhove G., Khalaf D. et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov 2018;8(4):444-57. DOI: 10.1158/2159-8290.CD-17-0937

58. Thangavel C., Boopathi E., Liu Y. et al. RB loss promotes prostate cancer metastasis. Cancer Res 2017;77(4):982-95. DOI: 10.1158/0008-5472.CAN-16-1589

59. Ku S.Y., Rosario S., Wang Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017;355(6320):78-83. DOI: 10.1126/science.aah4199

60. McNair C., Xu K., Mandigo A.C. et al. Differential impact of RB status on E2F1 reprogramming in human cancer. J Clin Invest 2018;128(1):341-58. DOI: 10.1172/JCI93566

61. Abida W., Cyrta J., Heller G. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA 2019;116(23):11428-36. DOI: 10.1073/pnas.1906812116

62. Annala M., Struss W.J., Warner E.W. et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol 2017;72(1):34-42. DOI: 10.1016/j.eururo.2017.02.023

63. Chakraborty G., Armenia J., Mazzu Y.Z. et al. Significance of BRCA2 and RB1 co-loss in aggressive prostate cancer progression. Clin Cancer Res 2020;26(8):2047-64. DOI: 10.1158/1078-0432.CCR-19-1570.

64. Matveev V.B., Kirichek A.A., Filippova M.G. et al. Impact of germline BRCA2 and CHEK2 mutations on time to castration resistance in patients with metastatic hormone-naïve prostate cancer. Urologiia = Urology 2019;(5):79-85. (In Russ.). DOI: 10.18565/urology.2019.5.79-85

65. Matveev V.B., Kirichek A.A., Savinkova A.V. et al. Impact of germline CHEK2 mutations on biochemical relapse free survival and metastasis free survival after radical treatment for patients with prostate cancer. Onkourologiya = Cancer Urology 2018;14(4):53-67. (In Russ.). DOI: 10.17650/1726-9776-2018-14-4-53-67


Review

For citations:


Stukan A.I., Goryainova A.Yu., Grigoryan M.M., Kutyan V.F., Zhdanov V.S., Semiglazova T.Yu., Imyanitov E.N. Androgen receptor signaling mechanism in prostate cancer: resistance to antiandrogen therapy and association with DNA repair genes. Cancer Urology. 2023;19(1):85-101. (In Russ.) https://doi.org/10.17650/1726-9776-2023-19-1-85-101

Views: 363


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X