Preview

Cancer Urology

Advanced search

Prospective study of prostate cancer detection using multiparametric magnetic resonance imaging ultrasound-guided fusion, standard, and saturation biopsy

https://doi.org/10.17650/1726-9776-2022-18-4-33-41

Abstract

Background. Currently, about 80 % of men with low-grade prostate cancer (per ISUP 1 (International Society of Urological Pathology)) have indications for radical treatment. Overdiagnosis of low-grade cancer is associated with the use of systematic biopsy methods (standard transrectal, saturation) under ultrasound control for diagnosis verification. To improve prostate cancer diagnosis, the European Association of Urology (2019) recommended multiparametric magnetic resonance imaging before biopsy, and in case of detection of a suspicious lesion magnetic resonance imaging (MRI)-targeted biopsy. In clinical practice, the most common method of MRI-targeted biopsy is multiparametric MRI ultrasound-guided (mpMRI/US) fusion biopsy. However, some studies show contradictory results in detection of prostate cancer using systematic and MRI-targeted biopsy techniques.

Aim. To compare detection of clinically significant prostate cancer (ISUP ≥2) using mpMRI/US fusion, standard, and saturation biopsy.

Materials and methods. The study included 96 patients. The following inclusion criteria were applied: prostate-specific antigen >2 ng/mL and/or detection of a suspicious lesion during digital rectal and/or transrectal ultrasound examination, and PI-RADS (Prostate Imaging Reporting and Data System) v.2.1 score ≥3. At the first stage, “unblinded” urologist performed a transperineal mpMRI/US fusion and saturation biopsies. At the second stage, “blinded” urologist performed standard transrectal biopsy. Clinically significant cancer was defined as ISUP ≥2.

Results. Median age was 63 years, prostate volume – 47 cm3, prostate-specific antigen – 6.82 ng/mL. MpMRI/US fusion, standard, and saturation biopsies were comparable in regard to the rate of detection of clinically significant (29, 24, 28 %; p = 0.81) and clinically insignificant (25, 26, 35 %; p = 0.43) cancer. Overall prostate cancer detection rates were also similar: 54, 50, 63 %, respectively (p = 0.59). The percentages of positive cores in mpMRI/US fusion, standard, and saturation biopsies were 33, 10 and 13 %, respectively (p <0.01). The maximal core length in mpMRI/US was 6.4 mm, in standard biopsy – 6.35 mm, in saturation biopsy – 5.1 mm (p = 0.7).

Conclusion. Detection rates of clinically significant, clinically insignificant prostate cancer and overall detection rate are comparable between systematic biopsy techniques and mpMRI/US fusion biopsy.

About the Authors

V. S. Petov
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Vladislav Sergeevich Petov

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



E. Yu. Timofeeva
N.V. Sklifosovsky Institute for Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 2, 11 Rossolimo St., Moscow 119435



A. K. Bazarkin
N.V. Sklifosovsky Institute for Clinical Medicine, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 2, 11 Rossolimo St., Moscow 119435



A. O. Morozov
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



M. S. Taratkin
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



T. M. Ganzha
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



S. P. Danilov
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



Ya. N. Chernov
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



A. F. Abdusalamov
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



A. V. Amosov
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



D. V. Enikeev
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



G. E. Krupinov
Institute of Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia (Sechenov University)
Russian Federation

Build. 1, 2 Bol’shaya Pirogovskaya St., Moscow 119435



References

1. Aizer A.A., Gu X., Chen M.H. et al. Cost implications and complications of overtreatment of low-risk prostate cancer in the united states. J Natl Compr Cancer Netw 2015;13(1):61–8. DOI: 10.6004/JNCCN.2015.0009

2. Albertsen P.C., Hanley J.A., Fine J. 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA 2005;293(17):2095–101. DOI: 10.1001/JAMA.293.17.2095

3. European Association of Urology. Available at: https://uroweb.org/ (accessed Sep. 06, 2022).

4. Eure G., Fanney D., Lin J. et al. Comparison of conventional transrectal ultrasound, magnetic resonance imaging, and microultrasound for visualizing prostate cancer in an active surveillance population: a feasibility study. Can Urol Assoc J 2019;13(3):E70–7. DOI: 10.5489/CUAJ.5361

5. Loeb S., Bjurlin M.A., Nicholson J. et al. Overdiagnosis and overtreatment of prostate cancer. Eur Urol 2014;65(6): 1046–55. DOI: 10.1016/J.EURURO.2013.12.062

6. Wagenlehner F.M.E., van Oostrum E., Tenke P. et al. Infective complications after prostate biopsy: outcome of the Global Prevalence Study of Infections in Urology (GPIU) 2010 and 2011, a prospective multinational multicentre prostate biopsy study. Eur Urol 2013;63(3):521–7. DOI: 10.1016/J.EURURO.2012.06.003

7. Loeb S., Vellekoop A., Ahmed H.U. et al. Systematic review of complications of prostate biopsy. Eur Urol 2013;64(6):876–92. DOI: 10.1016/J.EURURO.2013.05.049

8. Ploussard G., Nicolaiew N., Marchand C. et al. Risk of repeat biopsy and prostate cancer detection after an initial extended negative biopsy: longitudinal follow-up from a prospective trial. BJU Int 2013;111(6):988–96. DOI: 10.1111/J.1464-410X.2012.11607.X

9. Ahyai S.A., Isbarn H., Karakiewicz P.I. et al. The presence of prostate cancer on saturation biopsy can be accurately predicted. BJU Int 2010;105(5):636–41. DOI: 10.1111/J.1464-410X.2009.08744.X

10. Scattoni V., Zlotta A., Montironi R. et al. Extended and saturation prostatic biopsy in the diagnosis and characterisation of prostate cancer: a critical analysis of the literature. Eur Urol 2007;52(5):1309–22. DOI: 10.1016/J.EURURO.2007.08.006

11. Pepe P., Aragona F. Morbidity after transperineal prostate biopsy in 3000 patients undergoing 12 vs 18 vs more than 24 needle cores. Urology 2013;81(6):1142–6. DOI: 10.1016/J.UROLOGY.2013.02.019

12. Kasivisvanathan V., Rannikko A.S., Borghi M. et al. MRI-targeted or standard biopsy for prostate-cancer diagnosis. N Engl J Med 2018;378(19):1767–77. DOI: 10.1056/NEJMOA1801993

13. Baccaglini W., Glina F.P.A., Pazeto C.L. et al. mpMRI-targeted biopsy versus systematic biopsy for clinically significant prostate cancer diagnosis: a systematic review and metaanalysis. Curr Opin Urol 2020;30(5):711–9. DOI: 10.1097/MOU.0000000000000801

14. Van der Leest M., Cornel E., Israël B. et al. Head-to-head comparison of transrectal ultrasound-guided prostate biopsy versus multiparametric prostate resonance imaging with subsequent magnetic resonance-guided biopsy in biopsy-naïve men with elevated prostate-specific antigen: a large prospective multicenter clinical study. Eur Urol 2019;75(4):570–8. DOI: 10.1016/J.EURURO.2018.11.023

15. Hansen N.L., Kesch C., Barrett T. et al. Multicentre evaluation of targeted and systematic biopsies using magnetic resonance and ultrasound image-fusion guided transperineal prostate biopsy in patients with a previous negative biopsy. BJU Int 2017;120(5):631–8. DOI: 10.1111/BJU.13711

16. Kroenig M., Schaal K., Benndorf M. et al. Diagnostic accuracy of robot-guided, software based transperineal MRI/TRUS fusion biopsy of the prostate in a high risk population of previously biopsy negative men. Biomed Res Int 2016;2016:2384894. DOI: 10.1155/2016/2384894

17. Barrett T., Rajesh A., Rosenkrantz A.B. et al. PI-RADS version 2.1: one small step for prostate MRI. Clin Radiol 2019;74(11):841–52. DOI: 10.1016/J.CRAD.2019.05.019

18. Panebianco V., Barchetti F., Manenti G. et al. MR imaging-guided prostate biopsy: technical features and preliminary results. Radiol Med 2015;120(6):571–8. DOI: 10.1007/S11547-014-0490-0

19. Kasabwala K., Patel N., Cricco-Lizza E. et al. The learning curve for magnetic resonance imaging/ultrasound fusion-guided prostate biopsy. Eur Urol Oncol 2019;2(2):135–40. DOI: 10.1016/J.EUO.2018.07.005

20. Rouvière O., Puech P., Renard-Penna R. et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol 2019;20(1):100–9. DOI: 10.1016/S1470-2045(18)30569-2

21. Borghesi M., Bianchi L., Barbaresi U. et al. Diagnostic performance of MRI/TRUS fusion-guided biopsies vs. systematic prostate biopsies in biopsy-naïve, previous negative biopsy patients and men undergoing active surveillance. Minerva Urol Nephrol 2021;73(3):357–66. DOI: 10.23736/S2724-6051.20.03758-3

22. Simmons L.A.M., Kanthabalan A., Arya M. et al. Accuracy of transperineal targeted prostate biopsies, visual estimation and image fusion in men needing repeat biopsy in the PICTURE trial. J Urol 2018;200(6):1227–34. DOI: 10.1016/J.JURO.2018.07.001

23. Xie J., Jin C., Liu M. et al. MRI/transrectal ultrasound fusionguided targeted biopsy and transrectal ultrasound-guided systematic biopsy for diagnosis of prostate cancer: a systematic review and meta-analysis. Front Oncol 2022;12:880336. DOI: 10.3389/FONC.2022.880336

24. Goldberg H., Ahmad A.E., Chandrasekar T. et al. Comparison of magnetic resonance imaging and transrectal ultrasound informed prostate biopsy for prostate cancer diagnosis in biopsy naïve men: a systematic review and meta-analysis. J Urol 2020;203(6):1085–93. DOI: 10.1097/JU.0000000000000595

25. Mariotti G.C., Falsarella P.M., Garcia R.G. et al. Incremental diagnostic value of targeted biopsy using mpMRI-TRUS fusion versus 14-fragments prostatic biopsy: a prospective controlled study. Eur Radiol 2018;28(1):11–6. DOI: 10.1007/S00330-017-4939-0

26. Arsov C., Rabenalt R., Blondin D. et al. Prospective randomized trial comparing magnetic resonance imaging (MRI)-guided in-bore biopsy to MRI-ultrasound fusion and transrectal ultrasound-guided prostate biopsy in patients with prior negative biopsies. Eur Urol 2015;68(4):713–20. DOI: 10.1016/J.EURURO.2015.06.008

27. Kayano P.P., Carneiro A., Mendonça Lopez Castilho T. et al. Comparison of Gleason upgrading rates in transrectal ultrasound systematic random biopsies versus US-MRI fusion biopsies for prostate cancer. Int Braz J Urol 2018;44(6):1106–13. DOI: 10.1590/S1677-5538.IBJU.2017.0552

28. Yamada Y., Fujihara A., Shiraishi T. et al. Magnetic resonance imaging/transrectal ultrasound fusion-targeted prostate biopsy using three-dimensional ultrasound-based organ-tracking technology: initial experience in Japan. Int J Urol 2019;26(5):544–9. DOI: 10.1111/IJU.13924

29. Covin B., Roumiguié M., Quintyn-Ranty M.L. et al. Refining the risk-stratification of transrectal biopsy-detected prostate cancer by elastic fusion registration transperineal biopsies. World J Urol 2019;37(2):269–75. DOI: 10.1007/S00345-018-2459-4


Review

For citations:


Petov V.S., Timofeeva E.Yu., Bazarkin A.K., Morozov A.O., Taratkin M.S., Ganzha T.M., Danilov S.P., Chernov Ya.N., Abdusalamov A.F., Amosov A.V., Enikeev D.V., Krupinov G.E. Prospective study of prostate cancer detection using multiparametric magnetic resonance imaging ultrasound-guided fusion, standard, and saturation biopsy. Cancer Urology. 2022;18(4):33-41. (In Russ.) https://doi.org/10.17650/1726-9776-2022-18-4-33-41

Views: 410


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X