Preview

Cancer Urology

Advanced search

Modern mRNA-based molecular diagnostics for prediction of urothelial carcinoma behavior

https://doi.org/10.17650/1726-9776-2023-19-1-151-159

Abstract

Background. Bladder cancer, or urothelial carcinoma, is a common, aggressive, and still difficult to predict disease. For adequate therapy, timely diagnosis is essential since early detection of this tumor can significantly increase patient's survival at any age. Molecular genetic studies in cancer patients, including those with urothelial carcinoma, are becoming increasingly important. A number of major molecular genetic biomarkers of urothelial carcinoma are described in the world literature and used in clinical practice, however, information on the role of microRNA (miRNA) studies in the diagnosis of this disease has become available only in recent years.

Aim. To examine information of the world literature on the significance of miRNA identification in resected bladder tissues with non-muscle invasive urothelial tumors.

Materials and methods. We studied information from the world medical literature in the PubMed, CrossRef and Scopus databases dated between 2001 and 2022 on the significance of miRNA identification in resected bladder tissues with non-muscle invasive urothelial tumors.

Results. The results of the studies demonstrate that predictive levels of some miRNAs, as well as their associated proteins, should be assessed in the original tumor tissue and urinary vesicles in different clinical settings. The use of molecular genetic research, as one of the new diagnostic methods, will allow to personalize treatment for a particular patient and, if necessary, make a choice in favor of a more aggressive treatment method. In turn, this will increase the overall survival and quality of life of patients with aggressive tumors.

Conclusion. The next few years may bring many new discoveries that will help to unlock the secrets of miRNA dysregulation in urothelial carcinoma, leading to development and application of new targeted therapies in this patient population.

About the Authors

V. Yu. Startsev
Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
Russian Federation

2 Litovskaya St., Saint Petersburg 194100


Competing Interests:

None



S. L. Vorobyov
National Center for Clinical Morphological Diagnostics
Russian Federation

32 Prospekt Slavy, Saint Petersburg 192071


Competing Interests:

None



N. I. Tyapkin
L.D. Roman Leningrad Regional Clinical Oncological Hospital
Russian Federation

Nikolay I. Tyapkin.

2 Zaozernaya St., Kuzmolovskiy, Leningrad region 188663


Competing Interests:

None



A. E. Saad
“Sestroretskaya” Multi-field Clinic
Russian Federation

Build. 1, 2 Pogranichnikov St., Sestroretsk, Saint Petersburg 197706


Competing Interests:

None



G. V. Kondratiev
Saint Petersburg State Pediatric Medical University, Ministry of Health of Russia
Russian Federation

2 Litovskaya St., Saint Petersburg 194100


Competing Interests:

None



References

1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2015. CA Cancer J Clin 2015;65(1):5-29. DOI: 10.3322/caac.21254

2. Huang R., Zheng Z., Xian S. et al. Identification of prognostic and bone metastatic alternative splicing signatures in bladder cancer. Bioengineered 2021;12(1):5289-304. DOI: 10.1080/21655979.2021.1964252

3. Seidl C. Targets for therapy of bladder cancer. Semin Nucl Med 2020;50(2):162-70. DOI: 10.1053/j.semnuclmed.2020.02.006

4. Stenzl A., Cowan N.C., De Santis M. et al. Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol 2011;59(6):1009-18. DOI: 10.1016/j.eururo.2011.03.023

5. Wu L., Qu X. Cancer biomarker detection: recent achievements and challenges. Chem Soc Rev 2015;44(10):2963-97. DOI: 10.1039/c4cs00370e

6. Dimashkieh H., Wolff D.J., Smith T.M. et al. Evaluation of urovysion andcytology for bladder cancer detection: a study of 1835 paired urine samples with clinical and histologiccorrelation. Cancer Cytopathol 2013;121(10):591-7. DOI: 10.1002/cncy.21327

7. Dhondt B., Van Deun J., Vermaerke S. et al. Urinary extracellular vesicle biomarkers in urological cancers: From discovery towards clinical implementation. Int J Biochem Cell Biol 2018;99:236-25. DOI: 10.1016/j.biocel.2018.04.009

8. Darwiche F., Parekh D.J., Gonzalgos M.L. Biomarkers for nonmuscle invasive bladder cancer: currenttests and future promise. Indian J Urol 2015;31(4):273-82. DOI: 10.4103/0970-1591.166448

9. Oeyen E., Hoekx L., Wachter S.D. et al. Bladder cancer diagnosis and follow-up: the current status and possible role of extracellular vesicles. Int J Mol Sci 2019;20(4):821. DOI: 10.3390/ijms20040821

10. Chen H., Pan Y., Jin X., Chen G. An immune cell infiltration-related gene signature predicts prognosis for bladder cancer. Sci Rep 2021;11(1):16679. DOI: 10.1038/s41598-021-96373-w

11. Valadi H., Ekstrom K., Bossios A. et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 2007;9(6):654-9. DOI: 10.1038/ncb1596

12. Ромакина В.В., Жиров И.В., Насонова С.Н. и др. МикроРНК как биомаркеры сердечно-сосудистых заболеваний. Кардиология 2018;58(1):66-71. DOI: 10.18087/cardio.2018.1.10083 Romakina V.V., Zhirov I.V., Nasonova S.N. et al. MicroRNAs as biomarkers of cardiovascular diseases. Kardiologiya = Cardiology 2018;58(1):66-71. (In Russ.). DOI: 10.18087/cardio.2018.1.10083

13. Gareev I.F., Safin Sh.M., Zhao S., Yang G. Circulating microRNAs as new potential biomarkers for early diagnosis and prognosis of spontaneous intracerebral hemorrhage in humans. Meditsinskiy vestnik Bashkortostana = Bashkortostan Medical Journal 2017;12(6):120-5. (In Russ.).

14. Liu L., Wang S., Cao X., Liu J. Analysis of circulating microRNA biomarkers for breast cancer detection: a meta-analysis. Tumour Biol 2014;35(12):12245-53. DOI: 10.1007/s13277-014-2533-5

15. Cui Z., Lin D., Song W. et al. Diagnostic value of circulating microRNAs as biomarkers for breast cancer: a meta-analysis study. Tumour Biol 2015;36(2):829-39. DOI: 10.1007/s13277-014-2700-8

16. Tang S., Fan W., Xie J. et al. The role of ncRNAs in the diagnosis, prognosis and clinicopathological features of breast cancer: a systematic review and meta-analysis. Oncotarget 2017;8(46):81215-25. DOI: 10.18632/oncotarget.20149

17. Borga C., Meeran S.M., Fassan M. Non-coding RNAs, a real next-gen class of biomarkers? Noncoding RNA Res 2019;4(3):80-1. DOI: 10.1016/j.ncrna.2019.10.001

18. Lin S., Gregory R.I. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer 2015;15(6):321-33. DOI: 10.1038/nrc3932

19. Lee R.C., Feinbaum R.L., Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993;75(5):843-54. DOI: 10.1016/0092-8674(93)90529-y

20. Lau N.C., Lim L.P., Weinstein E.G., Bartel D.P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 2001;294(5543):858-62. DOI: 10.1126/science.1065062

21. Schubert M., Junker K., Heinzelmann J. Prognostic and predictive miRNA biomarkers in bladder, kidney and prostate cancer: Where do we stand in biomarker development? J Cancer Res Clin Oncol 2016;142(8):1673-95. DOI: 10.1007/s00432-015-2089-9

22. Sempere L.F., Kauppinen S. Translational implications of MicroRNAs in Clinical Diagnostics and Therapeutics. In: Handbook of cell signaling. Eds.: R.A. Bradshaw, E.A. Dennis. Oxford: Academic Press, 2009. Pp. 2965-2981.

23. O'Brien J., Hayder H., Zayed Y., Peng C. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol 2018;9:402. DOI: 10.3389/fendo.2018.00402

24. Peng Y., Croce C.M. The role of MicroRNAs in human cancer. Signal Transduct Target Ther 2016;1:15004. DOI: 10.1038/sigtrans.2015.4

25. Michael M.Z., O'Connor S.M., van Holst Pellekaan N.G., Young G.P. Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003;1(12):882-91.

26. Iorio M.V., Ferracin М., Liu C.G. et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005;65(16):7065-70. DOI: 10.1158/0008-5472.Can-05-1783

27. Motieghader H., Kouhsar M., Najafi A. et al. mRNA-miRNA bipartite network reconstruction to predict prognostic module biomarkers in colorectal cancer stage differentiation. Mol Biosyst 2017;13(10):2168-80. DOI: 10.1039/c7mb00400a

28. Deng S.P., Zhu L., Huang D.S. Mining the bladder cancer-associated genes byan integrated strategy for the construction and analysis of differential co-expression networks. BMC Genomics 2015;16(3):S4. DOI: 10.1186/1471-2164-16-S3-S4

29. Gaballah H. Integration of Gene Coexpression Network, GO en-richment analysis for identification gene expression signature of invasive bladder carcinoma. Transcriptomics: Open Access 2016;126. DOI: 10.4172/2329-8936.1000126

30. Zhang X., Zhang M., Hou Y. et al. Single-cell analyses of transcrip-tional heterogeneity insquamous cell carcinoma of urinary bladder. Oncotarget 2016;7(40):66069—76. DOI: 10.18632/oncotarget.11803

31. Di Y., Chen D., Yu W., Yan L. Bladder cancer stage-associated hub genes revealed by WGCNA co-expression network analysis. Hereditas 2019;156:7. DOI: 10.1186/s41065-019-0083-y

32. Lv Z.T., Gao S.T., Cheng P. et al. Association between polymorphism rs12722 in COL5A1 andmusculoskeletal soft tissue injuries: a systematic review and meta-analysis. Oncotarget 2018;9(20):15365-74. DOI: 10.18632/oncotarget.23805

33. Li X., Wang Z., Tong H. et al. Effects of COL8A1 on the proliferation of muscle-derived satellite. Cell Biol Int 2018;42(9):1132-40. DOI: 10.1002/cbin.10979

34. Adam L., Wszolek M.F., Liu C.G. et al. Plasma microRNA profiles for bladder cancer detection. Urol Oncol 2013;31(8):1701-8. DOI: 0.1016/j.urolonc.2012.06.010

35. Andrew A.S., Karagas M.R., Schroeck F.R., Marsit C.J. MicroRNA Dysregulation and non-muscle-invasive bladder cancer prognosis. Cancer Epidemiol Biomark Prev 2019;28(4):782-8. DOI: 10.1158/1055-9965.EPI-18-0884

36. Taheri M., Shirvani-Farsani Z., Ghafouri-Fard S., Omrani M.D. Expression profile of microRNAs in bladder cancer and their appli-cation as biomarkers. Biomed Pharmacother 2020;131:110703. DOI: 10.1016/j.biopha.2020.110703

37. Zhu Y., Lu Y., Zhang Q. et al. MicroRNA-26a/b and their host genes cooperate to inhibit the G1/S transition by activating the pRb protein. Nucleic Acids Res 2012;40(10):4615-25. DOI: 10.1093/nar/gkr1278

38. Gottardo F., Liu C.G., Ferracin M. et al. Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 2007;25(5):387-92. DOI: 10.1016/j.urolonc.2007.01.019

39. Christoph F., Schmidt B., Schmitz-Drager B.J., Schulz W.A. Over-expression and amplification of the c-myc gene in human urothelial carcinoma. Int J Cancer 1999;20,84(2):169-73. DOI: 10.1002/(sici)1097-0215(19990420)84:2<169::aid-ijc13>3.0.co;2-f

40. Moltzahn F., Olshen A.B., Baehner L. et al. Microfluidic-based multiplex qRT-PCR identifies diagnostic and prognostic microRNA signatures in the sera of prostate cancer patients. Cancer Res 2011;71(2):550-60. DOI: 10.1158/0008-5472.CAN-10-1229

41. Ghorbanmehr N., Gharbi S., Korsching E. et al. Mir-21-5p, miR-141-3p, and miR-205-5p levels in urine-promising biomarkers for the identification of prostate and bladder cancer. Prostate 2019;79(1):88-95. DOI: 10.1002/pros.23714

42. Yang H., Chen Z., Liu Z. MiR-20a-5p negatively regulates NR4A3 to promote metastasis in bladder cancer. J Oncol 2021;2021:1377989. DOI: 10.1155/2021/1377989

43. Lin J.T., Tsai K.W. Circulating miRNAs act as diagnostic biomarkers for bladder cancer in urine. Int J Mol Sci 2021;22(8):4278. DOI: 10.3390/ijms22084278

44. Tan J., Liu B., Zhou L. et al. LncRNA TUG1 promotes bladder cancer malignant behaviors by regulating the miR-320a/FOXQ1 axis. Cell Signal 2022;91:110216. DOI: 10.1016/j.cellsig.2021.110216

45. Guo P., Zhang G., Meng J. et al. Upregulation of long noncoding RNA TUG1 promotes bladder cancer cell proliferation, migration, and invasion by inhibiting miR-29c. Oncol Res 2018;26(7):1083-91. DOI: 10.3727/096504018X15152085755247

46. Long J., Menggen Q., Wuren Q. et al. Long noncoding RNA Taurine-Upregulated Gene1 (TUG1) promotes tumor growth and metastasis through TUG1/Mir-129-5p/Astrocyte-Elevated Gene-1 (AEG-1) axis in malignant melanoma. Med Sci Monit 2018;24:1547-59. DOI: 10.12659/msm.906616

47. Ren K., Li Z., Li Y. et al. Long non-coding RNA 10 taurine-upregulated gene 1 promotes cell proliferation and invasion in gastric cancer via negatively modulating miRNA-145-5p. Oncol Res 2016;25(5):789-98. DOI: 10.3727/096504016X14783677992682

48. Zhang M., Lu W., Huang Y. et al. Downregulation of the long non-coding RNA TUG1 inhibits the proliferation, migration, invasion and promotes apoptosis of renal cell carcinoma. J Mol Histol 2016;47(4):421-8. DOI: 10.1007/s10735-016-9683-2

49. Liu Q., Liu H., Cheng H. et al. Downregulation 19 of long noncoding RNA TUG1 inhibits proliferation and induces apoptosis through the TUG1/miR-142/ZEB2 axis in bladder cancer cells. Onco Targets Ther 2017;10:2461-71. DOI: 10.2147/OTT.S124595

50. Tan J., Qiu K., Li M., Liang Y. Double-negative feedback 20 loop between long non-coding RNA TUG1 and miR-145 promotes epithelial to mesenchymal transition and radioresistance in human bladder cancer cells. FEBS Lett 2015;589(20):3175-81. DOI: 10.1016/j.febslet.2015.08.020

51. Iliev R., Kleinova R., Juracek J. et al. Overexpression of long non-coding RNA TUG1 predicts poor prognosis and promotes cancer cell proliferation and migration in high-grade muscle-invasive bladder cancer. Tumour Biol 2016;37(10):13385-90. DOI: 10.1007/s13277-016-5177-9

52. Zhang S., Zhong G., He W. et al. lncRNA up-regulated in nonmuscle invasive bladder cancer facilitates tumor growth and acts as a negative prognostic factor of recurrence. J Urol 2016;196(4):1270-8. DOI: 10.1016/j.juro.2016.05.107

53. Huang M., Long Y., Jin Y. et al. Comprehensive analysis of the lncRNA-miRNA-mRNA regulatory network for bladder cancer. Transl Androl Urol 2021;10(3):1286-301. DOI: 10.21037/tau-21-81

54. Baumgart S., Meschkat P., Edelmann P. et al. MicroRNAs in tumor samples and urinary extracellular vesicles as a putative diagnostic tool for muscle-invasive bladder cancer. J Cancer Res Clin Oncol 2019;145(11):2725-36. DOI: 10.1007/s00432-019-03035-6

55. Piao X.M., Cha E.J., Yun S.J. et al. Role of exosomal miRNA in bladder cancer: a promising liquid biopsy biomarker. Int J Mol Sci 2021;22(4):1713. DOI: 10.3390/ijms22041713

56. Long J.D., Sullivan T.B., Humphrey J. et al. A non-invasive miRNA based assay to detectbladder cancer in cell-free urine. Am J Transl Res 2015;7(11):2500-9.

57. Stromme O., Heck K.A., Brede G. et al. Differentially expressed extracellular vesicle-contained microRNAs before and after transurethral resection of bladder tumors. Curr Issues Mol Biol 2021;43(1):286-300. DOI: 10.3390/cimb43010024

58. Li R., Chen X., Li X. et al. A four-miRNA signature in serum as a biomarker for bladder cancer diagnosis. Am J Transl Res 2022;14(7):4606-16.

59. Ware A.P., Kabekkodu S.P., Chawla A. et al. Diagnostic and prognostic potential clustered miRNAs in bladder cancer. 3 Biotech 2022;12(8):173. DOI: 10.1007/s13205-022-03225-z

60. Awadalla A., Zahran M.H., Abol-Enein H. et al. Identification of different miRNAs and their relevant miRNA targeted genes involved in sister chromatid cohesion and segregation (SCCS)/ chromatin remodeling pathway on T1G3 urothelial carcinoma (UC) response to BCG immunotherapy. Clin Genitourin Cancer 2022;20(3):e181-9. DOI: 10.1016/j.clgc.2021.12.001


Review

For citations:


Startsev V.Yu., Vorobyov S.L., Tyapkin N.I., Saad A.E., Kondratiev G.V. Modern mRNA-based molecular diagnostics for prediction of urothelial carcinoma behavior. Cancer Urology. 2023;19(1):151-159. (In Russ.) https://doi.org/10.17650/1726-9776-2023-19-1-151-159

Views: 351


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X