Nomograms for predicting local recurrence in prostate cancer patients with a positive resection margin
https://doi.org/10.17650/1726-9776-2022-18-3-67-75
Abstract
Background. Prostate cancer patients with a positive resection margin after radical prostatectomy are at risk of developing local recurrence. This risk should be carefully estimated in order to choose an optimal management strategy.
Aim. To develop a nomogram to predict the risk of local recurrence in patients with a positive resection margin using the data on patients who have undergone surgery.
Materials and methods. Routine pathomorphological examination of surgical specimens from 2255 patients with clinically significant local and locally advanced prostate cancer revealed 364 cases of positive resection margin. Statistical analysis allowed us to identify the most significant prognostic factors. Using selected preoperative factors and a mathematical model, we created a nomogram to predict local recurrence in patients with a positive resection margin.
Results. Our nomogram had an accuracy of 93% (area under the ROC curve (AUC) 0.9392; p <0.005), sensitivity of 0.99438, and specificity of 0.94545. The most significant prognostic factors included proportion of positive biopsy specimens, Gleason score (International Society of Urological Pathology (ISUP) grade estimated at routine pathomorphological examination), and presence and length of positive resection margin.
Conclusion. Our mathematical model and the nomogram based on it are highly accurate for predicting local recurrence and can therefore be used for choosing an optimal management strategy.
Keywords
About the Authors
K. M. NyushkoRussian Federation
Kirill Mihaylovich Nyushko
3 2nd Botkinskiy Proezd, Moscow 125284;
11 Volokolamskoe Shosse, Moscow 125080
Competing Interests:
The authors declare no conflict of interest.
V. M. Perepukhov
Russian Federation
3 2nd Botkinskiy Proezd, Moscow 125284
Competing Interests:
The authors declare no conflict of interest.
B. Ya. Alekseev
Russian Federation
3 2nd Botkinskiy Proezd, Moscow 125284;
11 Volokolamskoe Shosse, Moscow 125080
Competing Interests:
The authors declare no conflict of interest.
References
1. State of oncological care in Russia in 2020. Eds.: А.D. Kaprin, V.V. Starinskiy, A.О. Shachzadova. Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2021. 239 p. (In Russ.).
2. Bill-Axelson A., Holmberg L., Garmo H. et al. Radical prostatectomy or watchful waiting in prostate cancer – 29-year follow-up. N Engl J Med 2018;379(24):2319–29. DOI: 10.1056/NEJMoa1807801
3. Wilt T.J., Jones K.M., Barry M.J. et al. Follow-up of prostatectomy versus observation for early prostate cancer. N Engl J Med 2017;377(2):132–42. DOI: 10.1056/NEJMoa1615869
4. Hamdy F.C., Donovan J.L., Lane J.A. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med 2016;375(15):1415–24. DOI: 10.1056/NEJMoa1606220
5. Hegarty J., Beirne P.V., Walsh E. et al. Radical prostatectomy versus watchful waiting for prostate cancer. Cochrane Database Syst Rev 2010;(11):CD006590. DOI: 10.1002/14651858.CD006590.pub2
6. Pedregosa F., Varoquaux G., Gramfort A., Michel V. Scikit-learn: machine learning in python. JMLR 2011;12:2825–30.
7. CamDavidsonPilon/lifelines: v0.21.0. (2019) Available at: https://doi.org/10.5281/ZENODO.2638135
8. Therneau T.M., Lumley T., Atkinson E., Crowson C. A package for survival analysis in R. R package version 3.2-11. (2021). Available at: https://CRAN.Rproject.org/package=survival.
9. Therneau T.M., Grambsch P.M. Modeling survival data: extending the Cox model. New York: Springer, 2000.
10. Venables W.N., Ripley B.D. Modern applied statistics with S. 4th edn. New York: Springer, 2002. Available at: https://www.stats.ox.ac.uk/pub/MASS4/.
11. Fox J., Weisberg S. An R companion to applied regression. 3rd edn. Sage Publications, 2019. Available at: https://socialsciences.mcmaster.ca/jfox/Books/Companion/.
12. Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer, 2016. Available at: https://ggplot2.tidyverse.org.
13. Zhang Z., Kattan M.W. Drawing nomograms with R: applications to categorical outcome and survival data. Ann Transl Med 2017;5(10):211. DOI: 10.21037/atm.2017.04.01
Review
For citations:
Nyushko K.M., Perepukhov V.M., Alekseev B.Ya. Nomograms for predicting local recurrence in prostate cancer patients with a positive resection margin. Cancer Urology. 2022;18(3):67-75. (In Russ.) https://doi.org/10.17650/1726-9776-2022-18-3-67-75