Preview

Cancer Urology

Advanced search

Nomograms for predicting the risk of biochemical recurrence in patients with prostate cancer after surgery

https://doi.org/10.17650/1726-9776-2021-17-4-100-110

Abstract

Background. Prostate cancer (PCa) patients often develop recurrent disease after radical surgery. A tool that can accurately predict the risk of disease progression in the population of Russian patients will be very helpful to choose an optimal treatment strategy and prevent possible recurrence.

Objective: to analyze preoperative and postoperative prognostic factors for PCa progression and identify the most significant of them.

Materials and methods. This study included 2,255 patients with localized and locally advanced PCa who underwent radical surgery. We constructed nomograms for predicting the risk of disease progression after surgery using mathematical models.

Results. We created nomograms for predicting the risk of biochemical recurrence and probability of relapse-free survival by the level of prostate specific antigen (PSA) in patients with no lymph node metastases (pN0) according to the results of morphological examination and in patients with lymph node metastases (pN1). The accuracy of nomograms reached 71 % (area under the ROC curve (AUC) 0.7119) and 76 % (AUC 0.7617), respectively.

Conclusion. The nomograms demonstrated high accuracy of prognosis and can be used in the population of Russian patients.

About the Authors

K. M. Nyushko
National Medical Research Radiological Center, Ministry of Health of Russia; Medical Institute of Continuing Education, Moscow State University of Food Production
Russian Federation

Kirill M. Nyushko.

3 2nd Botkinskiy Proezd, Moscow 125284; 11 Volokolamskoe Shosse, Moscow 125080.


Competing Interests:

The authors declare no conflict of interest.



V. M. Perepukhov
National Medical Research Radiological Center, Ministry of Health of Russia
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284.


Competing Interests:

The authors declare no conflict of interest.



V. D. Gavrilova
Orenburg Regional Clinical Oncology Dispensary
Russian Federation

11 Gagarina St., Orenburg 460021.


Competing Interests:

The authors declare no conflict of interest.



B. Ya. Alekseev
National Medical Research Radiological Center, Ministry of Health of Russia; Medical Institute of Continuing Education, Moscow State University of Food Production
Russian Federation

3 2nd Botkinskiy Proezd, Moscow 125284; 11 Volokolamskoe Shosse, Moscow 125080.


Competing Interests:

The authors declare no conflict of interest.



References

1. Sung H., Ferlay J., Siegel R.L. et al. Global cancer statistics 2020: GLOBOCA Nestimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021;71(3):209-49. DOI: 10.3322/caac.21660.

2. Bill-Axelson A., Holmberg L., Garmo H. et al. Radical prostatectomy or watchful waiting in prostate cancer - 29-year follow-up. N Engl J Med 2018;379(24):2319-29. DOI: 10.1056/NEJMoa1807801.

3. Wilt T.J., Jones K.M., Barry M.J. et al. Follow-up of prostatectomy versus observation for early prostate cancer. N Engl J Med 2017;377(2):132-42. DOI: 10.1056/NEJMoa1615869.

4. Hamdy F.C., Donovan J.L., Lane J.A. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med 2016;375(15):1415-24. DOI: 10.1056/NEJMoa1606220.

5. Hegarty J., Beirne P.V., Walsh E. et al. Radical prostatectomy versus watchful waiting for prostate cancer. Cochrane Database Syst Rev 2010;(11):CD006590. DOI: 10.1002/14651858.CD006590.pub2.

6. D'Amico A.V., Whittington R., Malko-wicz S.B. et al. Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA 1998;280(11):969-74. DOI: 10.1001/jama.280.11.969.

7. Partin A.W., Kattan M.W., Subong E.N.P. et al. Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathologic stage of localized prostate cancer: a multi-institutional update. JAMA 1997;277(18):1445-51.

8. Kattan M.W., Eastham J.A., Stapleton A.M. et. al. A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 1998;90(10):766-71. DOI: 10.1093/jnci/90.10.766.

9. Kattan M.W., Eastham J.A., Wheeler T.M. et al. Counseling men with prostate cancer: a nomogram for predicting the presence of small, moderately differentiated, confined tumors. J Urol 2003;170(5):1792-7. DOI: 10.1097/01.ju.0000091806.70171.41.

10. Kattan M.W., Wheeler T.M., Scardino P.T. Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. Clin Oncol 1999;17(5):1499-507. DOI: 10.1200/JCO.1999.17.5.1499.

11. Jared M., Raymond E., O'Callaghan M.E. et al. Optimum tools for predicting clinical outcomes in prostate cancer patients undergoing radical prostatectomy: a systematic review of prognostic accuracy and validity. Clin Genitourin Cancer 2017;15(5):e827-34. DOI: 10.1016/j.clgc.2017.06.001.

12. Cooperberg M.R., Hilton J.F., Carroll P.R. The CAPRA-S score: a straightforward tool for improved prediction of outcomes after radical prostatectomy. Cancer 2011;117(22):5039-46. DOI: 10.1002/cncr.26169.

13. Stephenson A.J., Scardino P.T., Eastham J.A. et al. Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol 2005;23(28):7005-12. DOI: 10.1200/JCO.2005.01.867.

14. Kattan M.W., Vickers A.J., Yu C. et al. Preoperative and postoperative nomograms incorporating surgeon experience for clinically localized prostate cancer. Cancer 2009;115(5):1005-10. DOI: 10.1002/cncr.24083.

15. Schroeck F.R., Sun L., Freedland S.J. et al. Race and prostate weight as independent predictors for biochemical recurrence after radical prostatectomy. Prostate Cancer Prostatic Dis 2008;1(4)1:371-6. DOI: 10.1038/pcan.2008.18.

16. Chun F.K.H., Graefen M., Briganti A. et al. Initial biopsy outcome prediction -head-to-head comparison of a logistic regression-based nomogram versus artificial neural network. Eur Urol 2007;51(5):1236-43. DOI: 10.1016/j.eururo.2006.07.021.

17. Pedregosa F., Varoquaux G., Gramfort A., Michel V. Scikit-learn: machine learning in python. JMLR 2011;12:2825-30.

18. CamDavidsonPilon/lifelines: v0.21.0. (2019) Available at: https://doi.org/10.5281/ZENODO.2638135.

19. Therneau T.M., Lumley T., Atkinson E., Crowson C. A Package for Survival Analysis in R. R package version 3.2-11. (2021). Available at: https://CRAN.R-project.org/package=survival.

20. Therneau T.M., Grambsch P.M. Modeling survival data: extending the Cox model. New York: Springer, 2000.

21. Venables W.N., Ripley B.D. Modern applied statistics with S. Fourth edition. New York: Springer, 2002. Available at: https://www.stats.ox.ac.uk/pub/MASS4/.

22. Fox J., Weisberg S. An R companion to applied regression. Third edition. Sage Publications, 2019 Available at: https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

23. Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer, 2016. Available at: https://ggplot2.tidyverse.org.

24. Zhang Z., Kattan M.W. Drawing Nomograms with R: applications to categorical outcome and survival data. Ann Transl Med 2017;5(10):211. DOI: 10.21037/atm.2017.04.01.


Review

For citations:


Nyushko K.M., Perepukhov V.M., Gavrilova V.D., Alekseev B.Ya. Nomograms for predicting the risk of biochemical recurrence in patients with prostate cancer after surgery. Cancer Urology. 2021;17(4):100-110. (In Russ.) https://doi.org/10.17650/1726-9776-2021-17-4-100-110

Views: 992


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X