VI-RADS system and levels of tumor microenvironment biomarkers in patients with muscle-invasive bladder cancer when choosing treatment tactics
https://doi.org/10.17650/1726-9776-2020-16-3-117-125
Abstract
Objective: to identify the role simultaneous use of the Vesical Imaging-Reporting and Data System (VI-RADS) and the assessment of serum levels of several mediators and growth factors for the evaluation of metastatic process and disease stage in patients with bladder cancer.
Materials and methods. This retrospective study included 85 patients with histologically verified transitional cell (urothelial) bladder carcinoma (stages рТа—TINOMO. [)T2NOMO, рТ3—4NN0M0, and [)T2—4N1—3M1) and 20 healthy controls. In addition to general clinical examinations, all patients have undergone preoperative diffusion-weighted magnetic resonance imaging of the pelvis with background suppression. We calculated the diffusion coefficient and included it into the VI-RADS protocol. All study participants were also tested for their serum levels of vascular endothelial growth factor (VEGF), interleukin-8 (IL-8), monocyte chemoattractant protein 1 (MSP-1), interferon γ (IFN-γ), transforming growth factor β1 (TGF- β1), granulocyte colony-stimulating factor (G-CSF), and granulocyte-macrophage colonystimulating factor (GM-CSF) using enzyme-linked immunosorbent assay (ELISA).
Results and conclusion. We found that the preoperative use of VI-RADS together with the assessment of serum levels of pro-inflammatory mediators, colony-stimulating factors, and growth factors in patients with muscle-invasive bladder cancer provide additional information about the activity of malignant transformation in tumor tissue and tumor spread. Their simultaneous use during the examination of patients with muscle-invasive bladder cancer is a promising diagnostic approach to monitor treatment response.
Keywords
About the Authors
A. N. PonukalinRussian Federation
112 Bol'shaya Kazach'ya St., Saratov 410012.
Competing Interests:
The authors declare no conflict of interest.
N. B. Zakharova
Russian Federation
112 Bol'shaya Kazach'ya St., Saratov 410012.
Competing Interests:
The authors declare no conflict of interest.
M. L. Chekhonatskaya
Russian Federation
112 Bol'shaya Kazach'ya St., Saratov 410012.
Competing Interests:
The authors declare no conflict of interest.
V. V. Zuev
Russian Federation
112 Bol'shaya Kazach'ya St., Saratov 410012.
Competing Interests:
The authors declare no conflict of interest.
A. Yu. Korolev
Russian Federation
112 Bol'shaya Kazach'ya St., Saratov 410012.
Competing Interests:
The authors declare no conflict of interest.
I. A. Chekhonatskiy
Russian Federation
Build. 1, 2 / 1 Barrikadnaya St., Moscow 125993.
Competing Interests:
The authors declare no conflict of interest.
References
1. Axel E.M., Matveev V.B. Statistics of malignant tumors of urinary and male urogenital organs in Russia and the countries of the former USSR. Onkourologiya = Cancer Urology 2019; 15(2):15-24. (In Russ.).
2. Kogan M.I. Bladder cancer (classic and innovations). Moscow: Medforum, 2017. 262 p. (In Russ.).
3. Naselli A., Guarneri A. Bladder cancer under staging: still unavoidable? Transl Androl Urol 2019;8 (Suppl 5):S486-7. DOI: 10.21037/tau.2019.09.44.
4. Xiong Y.Q., Tan J., Liu Y.M. et al. Diagnostic accuracy of optical coherence tomography for bladder cancer: a systematic review and metaanalysis. Photodiagnosis Photodyn Ther 2019;27:298-304. DOI: 10.1016/j.pdpdt.2019.06.006.
5. Panebianco V., Narumi Y., Altun E. et al. Multiparametric magnetic resonance imaging for bladder cancer: development of VI-RADS (Vesical Imaging-Reporting And Data System). Eur Urol 2018;74(3):294-306. DOI: 10.1016/j.eururo.2018.04.029.
6. Liu S., Xu F., Xu T. et al. Evaluation of Vesical Imaging-Reporting and Data System (VI-RADS) scoring system in predicting muscle invasion of bladder cancer. Transl Androl Urol 2020;9 (2):445-51. DOI: 10.21037/tau.2020.02.16.
7. Woo S., Panebianco V., Narumi Y. et al. diagnostic performance of vesical imaging reporting and data system for the prediction of muscle-invasive bladder cancer: a systematic review and metaanalysis. Eur Urol Oncol 2020;3(3):306-15. DOI: 10.1016/j.euo.2020.02.007.
8. Panebianco V., Barchetti F., de Haas R.J. et al. Improving staging in bladder cancer: the increasing role of multiparametric magnetic resonance imaging. Eur Urol Focus 2016;2(2):113-21. DOI: 10.1016/j.euf.2016.04.010.
9. Achard C., Surendran A., Wedge M.E. et al. Lighting a fire in the tumor microenvironment using oncolytic immunotherapy. EBioMedicine 2018;31:17-24. DOI: 10.1016/j.ebiom.2018.04.020.
10. Pages F., Galon J., Dieu-Nosjean M. et al. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 2010;29:1093-102. DOI: 10.1038/onc.2009.416.
11. Hong I. Stimulatory versus suppressive effects of GM-CSF on tumor progression in multiple cancer types. Exp Mol Med 2016;48(7):e242. DOI: 10.1038/emm.2016.64.
12. Jain K.K. Biomarkers & Personalized Medicine. In: The Handbook of Biomarkers. New York: Humana Press, 2017. 712 p.
13. Gnjatic S., Bronte V., Brunet L.R. et al. Identifying baseline immune-related biomarkers to predict clinical outcome of immunotherapy. J Immunother Cancer 2017;5:44. DOI: 10.1186/s40425-017-0243-4.
14. Kumari N., Agrawal U., Mishra A.K. et al. Predictive role of serum and urinary cytokines in invasion and recurrence of bladder cancer. Tumour Biol 2017; 39(4):1010428317697552. DOI: 10.1177/1010428317697552.
15. Zakharova N.B., Ponukalin A.N., Komyagin Yu.M. et al. The rate of progression of malignant growth in patients with tumor diseases of the prostate, bladder, kidneys. Eksperimental'naya i klinicheskaya urologiya = Experimental and Clinical Urology 2019;(3):72-8. (In Russ.).
16. Shiryaev A.A., Govorov A.V., Vasieliev A.O. et al. Molecular biomarkers in diagnosis of bladder cancer. Onkourologiya = Cancer Urology 2020;16 (1):100-5. (In Russ.).
17. Yoshida S., Koga F., Masuda H. et al. Role of diffusion-weighted magnetic resonance imaging as an imaging biomarker of urothelial carcinoma. Int J Urol 2014;21 (12):1190-200. DOI: 10.1111/iju.12587.
18. Rosenkrantz A.B., Haghighi M., Horn J. et al. Utility of quantitative MRI metrics for assessment of stage and grade of urothelial carcinoma of the bladder: preliminary results. Am J Roentgenol 2013;201(6):1254-9. DOI: 10.2214/AJR.12.10348.
19. Woo S., Suh C.H., Kim S.Y. et al. Diagnostic performance of MRI for prediction of muscle-invasiveness of bladder cancer: a systematic review and meta-analysis. Eur J Radiol 2017;95:46-55. DOI: 10.1016/j.ejrad.2017.07.021.
20. Mishchenko A.V., Vasiliev A.V., Petrova A.S., Danilov V.V. The basics of VI-RADS concept of multiparametric magnetic resonance imaging of bladder cancer. Luchevaya diagnostika i terapiya = Diagnostic Radiology and Radiotherapy 2019;3(10):5-13. (In Russ.).
21. Hand D.J., Till R.J. A simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning 2001;45:171-86. DOI: 10.1023/A:1010920819831.
22. Korolyuk I.P. Medical Informatics: Textbook. 2nd edn., reprint and extra. Samara: Ofort, GBOU VPO SamGMU, 2012. 244 p. (In Russ.).
Review
For citations:
Ponukalin A.N., Zakharova N.B., Chekhonatskaya M.L., Zuev V.V., Korolev A.Yu., Chekhonatskiy I.A. VI-RADS system and levels of tumor microenvironment biomarkers in patients with muscle-invasive bladder cancer when choosing treatment tactics. Cancer Urology. 2020;16(3):117-125. (In Russ.) https://doi.org/10.17650/1726-9776-2020-16-3-117-125