Preview

Онкоурология

Расширенный поиск

Роль макрофагов, ассоциированных с опухолью в патогенезе почечно-клеточного рака

https://doi.org/10.17650/1726-9776-2017-13-1-20-26

Полный текст:

Аннотация

Роль опухолевой стромы в патогенезе злокачественных опухолей не подвергается сомнению. Макрофаги – одни из ключевых элементов опухолевой стромы. Макрофаги, ассоциированные с опухолью (МАО), являются макрофагами 2-го типа активации (М2), которые впервые были описаны в1992 г. К их маркерам относятся CD206, CD163, FXIIIa, βIG-H3, стабилин 1, YKL-39, SI–CLP, тенасцин С, LOX-1, MARCO, фибронектин, антагонист рецептора интерлейкина 1 (ИЛ-1RA) и др. В отличие от провоспалительных макрофагов (М1) М2 обладают выраженной противовоспалительной активностью и отвечают за подавление воспалительной реакции и восстановление ткани в очаге воспаления. МАО вносят значительный вклад в прогрессию опухолей за счет стимуляции пролиферации клеток, ангиогенеза и подавления противоопухолевого иммунного ответа. Для выявления макрофагов в опухолях почки используют ограниченное количество маркеров, не позволяющих сделать однозначного вывода относительно их функции. Однако несмотря на это, ассоциацию количества МАО с плохим прогнозом заболевания можно считать доказанной. Исследования фенотипа М1 и М2 с использованием их различных маркеров показали, что в опухолях почки присутствует большое количество МАО, имеющих смешанный М1/М2-фенотип. МАО в опухолях почки обладают выраженными проангиогенными и иммуносупрессорными свойствами. Хотя плотность МАО может быть использована в качестве прогностического маркера, необходимы систематические исследования с применением широкой панели маркеров М1 и М2 для разработки эффективной стратегии лечения, направленной на нейтрализацию проопухолевой активности МАО.

Об авторах

О. В. Ковалева
Российский онкологический научный центр им. Н.Н. Блохина
Россия
115478 Москва, Каширское шоссе, 24


Г. Д. Ефремов
Национальный медицинский исследовательский радиологический центр
Россия
125284 Москва, 2-й Боткинский проезд, 3


Д. С. Михайленко
Национальный медицинский исследовательский радиологический центр
Россия
125284 Москва, 2-й Боткинский проезд, 3


Б. Я. Алексеев
Национальный медицинский исследовательский радиологический центр
Россия
125284 Москва, 2-й Боткинский проезд, 3


А. Н. Грачев
Российский онкологический научный центр им. Н.Н. Блохина
Россия

Алексей Николаевич Грачев

115478 Москва, Каширское шоссе, 24



Список литературы

1. Mantovani A., Allavena P., Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer 2004;40(11):1660–7. DOI: 10.1016/j.ejca.2004.03.016. PMID: 15251154.

2. Mantovani A., Bottazzi B., Colotta F. et al. The origin and function of tumor-associated macrophages. Immunol Today 1992;13(7):265–70. DOI: 10.1016/0167-5699(92)90008-U. PMID: 1388654.

3. Mantovani A., Locati M. Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization: lessons and open questions. Arterioscler Thromb Vasc Biol 2013;33(7):1478–83. DOI: 10.1161/ATVBAHA.113.300168. PMID: 23766387.

4. Toge H., Inagaki T., Kojimoto Y. et al. Angiogenesis in renal cell carcinoma: the role of tumor-associated macrophages. Int J Urol 2009;16(10):801–7. DOI: 10.1111/j.1442-2042.2009.02377.x. PMID: 19811548.

5. Garcia J.A., Cowey C.L., Godley P.A. Renal cell carcinoma. Curr Opin Oncol 2009;21(3):266–71. DOI: 10.1097/CCO.0b013e32832a05c8. PMID: 19339887.

6. Yu M.C., Mack T.M., Hanisch R. et al. Cigarette smoking, obesity, diuretic use, and coffee consumption as risk factors for renal cell carcinoma. J Natl Cancer Inst 1986;77(2):351–6. PMID: 3461197.

7. Rathmell W.K., Godley P.A. Recent updates in renal cell carcinoma. Curr Opin Oncol 2010;22(3):250–6. DOI: 10.1097/CCO.0b013e328337a5d2. PMID: 20154618.

8. Stein M., Keshav S., Harris N., Gordon S. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 1992;176(1):287–92. PMID: 1613462.

9. Gratchev A., Guillot P., Hakiy N. et al. Alternatively activated macrophages differentially express fibronectin and its splice variants and the extracellular matrix protein betaIG-H3. Scand J Immunol 2001;53(4):386–92. PMID: 11285119.

10. Gratchev A., Kzhyshkowska J., Kannookadan S. et al. Activation of a TGF-beta-specific multistep gene expression program in mature macrophages requires glucocorticoid-mediated surface expression of TGFbeta receptor II. J Immunol 2008;180(10): 6553–65. PMID: 18453574.

11. Murray P.J., Allen J.E., Biswas S.K. et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity 2014;41(1):14–20. DOI: 10.1016/j.immuni.2014.06.008. PMID: 25035950.

12. Goerdt S., Orfanos C.E. Other functions, other genes: alternative activation of antigenpresenting cells. Immunity 1999;10(2): 137–42. PMID: 10072066.

13. Gordon S. Alternative activation of macrophages. Nat Rev Immunol 2003;3(1):23–35. DOI: 10.1038/nri978. PMID: 12511873.

14. Gratchev A., Schledzewski K., Guillot P., Goerdt S. Alternatively activated antigen-presenting cells: molecular repertoire, immune regulation, and healing. Skin Pharmacol Appl Skin Physiol 2001;14(5):272–9. DOI: 56357. PMID: 11586068.

15. Goerdt S., Politz O., Schledzewski K. et al. Alternative versus classical activation of macrophages. Pathobiology 1999;67(5–6): 222–6. DOI: 28096. PMID: 10725788.

16. Schaer D.J., Boretti F.S., Hongegger A. et al. Molecular cloning and characterization of the mouse CD163 homologue, a highly glucocorticoid-inducible member of the scavenger receptor cysteine-rich family. Immunogenetics 2001;53(2):170–7. PMID: 11345593.

17. Elshourbagy N.A., Li X., Terrett J. et al. Molecular characterization of a human scavenger receptor, human MARCO. Eur J Biochem 2000;267(3):919–26. PMID: 10651831.

18. Gratchev A., Kzhyshkowska J., Utikal J., Goerdt S. Interleukin-4 and dexamethasone counterregulate extracellular matrix remodelling and phagocytosis in type-2 macrophages. Scand J Immunol 2005;61(1):10–7. DOI: 10.1111/j.0300-9475.2005.01524.x. PMID: 15644118.

19. Vannier E., Miller L.C., Dinarello C.A. Coordinated antiinflammatory effects of interleukin 4: interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA 1992;89(9):4076–80. PMID: 1533284.

20. Vannier E., de Waal M.R., Salazar-Montes A. et al. Interleukin-13 (IL-13) induces IL-1 receptor antagonist gene expression and protein synthesis in peripheral blood mononuclear cells: inhibition by an IL-4 mutant protein. Blood 1996;87(8):3307–15. PMID: 8605347.

21. Kodelja V., Muller C., Politz O. et al. Alternative macrophage activation-associated CCchemokine-1, a novel structural homologue of macrophage inflammatory protein-1 alpha with a Th2-associated expression pattern. J Immunol 1998;160(3):1411–8. PMID: 9570561.

22. Van Ginderachter J.A., Movahedi K., Hassanzadeh Ghassabeh G. et al. Classical and alternative activation of mononuclear phagocytes: picking the best of both worlds for tumor promotion. Immunobiology 2006;211(6–8):487–501. DOI: 10.1016/j.imbio.2006.06.002. PMID: 16920488.

23. Chang C., Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol 2001;11(11):S37–43. PMID: 11684441.

24. Liu Q., Zhang G.W., Zhu C.Y. et al. Clinicopathological significance of matrix metalloproteinase 2 protein expression in patients with renal cell carcinoma: A case-control study and meta-analysis. Cancer Biomark 2016;16(2): 281–9. DOI: 10.3233/CBM-150566. PMID: 26756619.

25. Duffy M.J. Urokinase plasminogen activator and its inhibitor, PAI-1, as prognostic markers in breast cancer: from pilot to level 1 evidence studies. Clin Chem 2002;48(8): 1194–7. PMID: 12142372.

26. Andreasen P.A., Kjoller L., Christensen L., Duffy M.J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997;72(1):1–22. PMID: 9212216.

27. Hildenbrand R., Dilger I., Horlin A., Stutte H.J. Urokinase and macrophages in tumour angiogenesis. Br J Cancer 1995;72(4):818–23. PMID: 7547226.

28. Hildenbrand R., Glienke W., Magdolen V. et al. Urokinase receptor localization in breast cancer and benign lesions assessed by in situ hybridization and immunohistochemistry. Histochem Cell Biol 1998;110(1):27–32. PMID: 9681686.

29. Foekens J.A., Peters H.A., Look M.P. et al. The urokinase system of plasminogen activation and prognosis in 2780 breast cancer patients. Cancer Res 2000;60(3):636–43. PMID: 10676647.

30. Fuessel S., Erdmann K., Taubert H. et al. Prognostic impact of urokinase-type plasminogen activator system components in clear cell renal cell carcinoma patients without distant metastasis. BMC Cancer 2014;14:974. DOI: 10.1186/1471-2407-14-974. PMID: 25519168.

31. Komohara Y., Hasita H., Ohnishi K. et al. Macrophage infiltration and its prognostic relevance in clear cell renal cell carcinoma. Cancer Sci 2011;102(7):1424–31. DOI: 10.1111/j.1349-7006.2011.01945.x. PMID: 21453387.

32. Daurkin I., Eruslanov E., Stoffs T. et al. Tumor-associated macrophages mediate immunosuppression in the renal cancer microenvironment by activating the 15-lipoxygenase-2 pathway. Cancer Res 2011;71(20):6400–9. DOI: 10.1158/0008-5472.CAN-11-1261. PMID: 21900394.

33. Eruslanov E., Stoffs T., Kim W.J. et al. Expansion of CCR8(+) inflammatory myeloid cells in cancer patients with urothelial and renal carcinomas. Clin Cancer Res 2013;19(7):1670–80. DOI: 10.1158/1078-0432.CCR-12-2091. PMID: 23363815.

34. Ikemoto S., Yoshida N., Narita K. et al. Role of tumor-associated macrophages in renal cell carcinoma. Oncol Rep 2003;10(6):1843–9. PMID: 14534706.

35. Petrella B.L., Vincenti M.P. Interleukin1beta mediates metalloproteinase-dependent renal cell carcinoma tumor cell invasion through the activation of CCAAT enhancer binding protein beta. Cancer Med 2012;1(1):17–27. DOI: 10.1002/cam4.7. PMID: 23342250.

36. Chittezhath M., Dhillon M.K., Lim J.Y. et al. Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression. Immunity 2014;41(5):815–29. DOI: 10.1016/j.immuni.2014.09.014. PMID: 25453823.

37. Ma C., Komohara Y., Ohnishi K. et al. Infiltration of tumor-associated macrophages is involved in CD44 expression in clear cell renal cell carcinoma. Cancer Sci 2016;107(5):700–7. DOI: 10.1111/cas.12917. PMID: 26918621.

38. Komohara Y., Morita T., Annan D.A. et al. The coordinated actions of TIM-3 on cancer and myeloid cells in the regulation of tumorigenicity and clinical prognosis in clear cell renal cell carcinomas. Cancer Immunol Res 2015;3(9):999–1007. DOI: 10.1158/2326-6066.CIR-14-0156. PMID: 25783986.

39. Xu L., Zhu Y., Chen L. et al. Prognostic value of diametrically polarized tumor-associated macrophages in renal cell carcinoma. Ann Surg Oncol 2014;21(9):3142–50. DOI: 10.1245/s10434-014-3601-1. PMID: 24615178.

40. Li C., Liu B., Dai Z., Tao Y. Knockdown of VEGF receptor-1 (VEGFR-1) impairs macrophage infiltration, angiogenesis and growth of clear cell renal cell carcinoma (CRCC). Cancer Biol Ther 2011;12(10):872–80. DOI: 10.4161/cbt.12.10.17672. PMID: 21989163.

41. Behnes C.L., Bremmer F., Hemmerlein B. et al. Tumor-associated macrophages are involved in tumor progression in papillary renal cell carcinoma. Virchows Arch 2014;464(2):191–6. DOI: 10.1007/s00428-013-1523-0. PMID: 24327306.

42. Politz O., Gratchev A., McCourt P.A. et al. Stabilin-1 and -2 constitute a novel family of fasciclin-like hyaluronan receptor homologues. Biochem J 2002;362(Pt 1):155–64. PMID: 11829752.

43. Gratchev A., Schmuttermaier C., Mamidi S. et al. Expression of osteoarthritis marker YKL-39 is stimulated by transforming growth factor beta (TGF-beta) and IL-4 in differentiating macrophages. Biomark Insights 2008;3:39–44. PMID: 19578492.

44. Kzhyshkowska J., Mamidi S., Gratchev A. et al. Novel stabilin-1 interacting chitinase-like protein (SI-CLP) is up-regulated in alternatively activated macrophages and secreted via lysosomal pathway. Blood 2006;107(8):3221–8. DOI: 10.1182/blood-2005-07-2843. PMID: 16357325.

45. Buldakov M., Zavyalova M., Krakhmal N. et al. CD68+, but not stabilin-1+ tumor associated macrophages in gaps of ductal tumor structures negatively correlate with the lymphatic metastasis in human breast cancer. Immunobiology 2015. DOI: 10.1016/j.imbio.2015.09.011.


Для цитирования:


Ковалева О.В., Ефремов Г.Д., Михайленко Д.С., Алексеев Б.Я., Грачев А.Н. Роль макрофагов, ассоциированных с опухолью в патогенезе почечно-клеточного рака. Онкоурология. 2017;13(1):20-26. https://doi.org/10.17650/1726-9776-2017-13-1-20-26

For citation:


Kovaleva O.V., Efremov G.D., Mikhaylenko D.S., Alekseev B.Y., Grachev A.N. Role of tumor-associated macrophages in renal cell carcinoma pathogenesis. Cancer Urology. 2017;13(1):20-26. (In Russ.) https://doi.org/10.17650/1726-9776-2017-13-1-20-26

Просмотров: 909


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)