Review of the effectiveness of nuclear magnetic resonance spectroscopy for prostate cancer diagnosis
https://doi.org/10.17650/1726-9776-2025-21-2-182-191
Abstract
Prostate cancer (PCa) is the most common malignant neoplasm among men in Russia and one of the most common worldwide. PCa diagnosis, progression management, and evaluation of prognosis are performed using a combination of examinations: laboratory, instrumental, and various nomograms. The current methods of PCa diagnosis have limited sensitivity and specificity, therefore the search for new diagnostic methods is an important problem. Nuclear magnetic resonance (NMR) spectroscopy is a promising method allowing to detect malignant tumor-associated metabolites in biological liquids. According to some studies, PCa is associated with changes in levels of various metabolites in serum and plasma. This review presents the results of studies reporting on high effectiveness of NMR spectroscopy analysis of serum and plasma for PCa diagnosis.
About the Authors
V. M. PerepukhovRussian Federation
Vladimir Maksimovich Perepukhov
Build. 1, 51 3rd Parkovaya St., Moscow 105425
K. M. Nyushko
Russian Federation
Build. 1, 51 3rd Parkovaya St., Moscow 105425;
11 Volokolamskoe Shosse, Moscow 125080
B. Ya. Alekseev
Russian Federation
11 Volokolamskoe Shosse, Moscow 125080;
3 2nd Botkinskiy Proezd, Moscow 125284
O. A. Mailyan
Russian Federation
3 2nd Botkinskiy Proezd, Moscow 125284
References
1. State of oncological care in Russia in 2023. Eds.: А.D. Kaprin, V.V. Starinskiy, A.O. Shachzadova. Moscow: MNIOI im. P.A. Gertsena – filial FGBU “NMITS radiologii” Minzdrava Rossii, 2024. 262 p. (In Russ.).
2. Bray F., Laversanne M., Sung H. et al. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2024;74(3):229–63. DOI: 10.3322/caac.21834
3. Nosov D.A., Volkova M.I., Gladkov O.A. et al. Practical guidelines on drug treatment of prostate cancer. RUSSCO practical guidelines, part 1. Zlokachestvennye opukholi = Malignant Tumors 2023;13(3s2): 640–60. (In Russ.). DOI: 10.18027/2224-5057-2023-13-3s2-1-640-660
4. Lilja H., Ulmert D., Vickers A.J. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 2008;8(4):268–78. DOI: 10.1038/nrc2351
5. Kushlinskiy K.E., Storozhenko I.V., Sergeeva N.S. et al. Prostate cancer and prostate-specific antigen. Rossiyskiy onkologicheskiy zhurnal = Russian Journal of Oncology 2000;(1):44–8. (In Russ.).
6. Sundaresan V.M., Smani S., Rajwa P. et al. Prostate-specific antigen screening for prostate cancer: diagnostic performance, clinical thresholds, and strategies for refinement. Urol Oncol 2025;43(1):41–8. DOI: 10.1016/j.urolonc.2024.06.003
7. Haythorn M.R., Ablin R.J. Prostate-specific antigen testing across the spectrum of prostate cancer. Biomark Med 2011;5(4):515–26. DOI: 10.2217/bmm.11.53
8. Ploussard G., Nicolaiew N., Marchand C. et al. Prospective evaluation of an extended 21-core biopsy scheme as initial prostate cancer diagnostic strategy. Eur Urol 2014;65(1):154–61. DOI: 10.1016/j.eururo.2012.05.049
9. De la Taille A., Antiphon P., Salomon L. et al. Prospective evaluation of a 21-sample needle biopsy procedure designed to improve the prostate cancer detection rate. Urology 2003;61(6):1181–6. DOI: 10.1016/s0090-4295(03)00108-0
10. Ahmed H.U., El-Shater Bosaily A., Brown L.C. et al. Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet 2017;389(10071):815–22. DOI: 10.1016/S0140-6736(16)32401-1
11. Loeb S., Vellekoop A., Ahmed H.U. et al. Systematic review of complications of prostate biopsy. Eur Urol 2013;64(6):876–92. DOI: 10.1016/j.eururo.2013.05.049
12. Van der Kwast T.H., Roobol M.J. Defining the threshold for significant versus insignificant prostate cancer. Nat Rev Urol 2013;10(8):473–82. DOI: 10.1038/nrurol.2013.112
13. Valerio M., Donaldson I., Emberton M. et al. Detection of clinically significant prostate cancer using magnetic resonance imaging – ultrasound fusion targeted biopsy: a systematic review. Eur Urol 2015;68(1):8–19. DOI: 10.1016/j.eururo.2014.10.026
14. Mlynárik V. Introduction to nuclear magnetic resonance. Anal Biochem 2017;529:4–9. DOI: 10.1016/j.ab.2016.05.006
15. Bleaney B. Jubilees of radio-frequency spectroscopy. Notes Rec R Soc Lond 1997;51(2):317–26.
16. Günther H. NMR spectroscopy: basic principles, concepts and applications in chemistry. John Wiley & Sons, 2013.
17. Cacciatore S., Loda M. Innovation in metabolomics to improve personalized healthcare. Ann N Y Acad Sci 2015;1346(1):57–62. DOI: 10.1111/nyas.12775
18. Nicholson J.K., Lindon J.C., Holmes E. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999;29(11):1181–9. DOI: 10.1080/004982599238047
19. Jordan K.W., Nordenstam J., Lauwers G.Y. et al. Metabolomic characterization of human rectal adenocarcinoma with intact tissue magnetic resonance spectroscopy. Dis Colon Rectum 2009;52(3):520–5. DOI: 10.1007/DCR.0b013e31819c9a2c
20. Trock B.J. Application of metabolomics to prostate cancer. Urol Oncol 2011;29(5):572–81. DOI: 10.1016/j.urolonc.2011.08.002
21. Ren J.L., Zhang A.H., Kong L., Wang X.J. Advances in mass spectrometry-based metabolomics for investigation of metabolites. RSC Adv 2018;8(40):22335–50. DOI: 10.1039/c8ra01574k
22. Nagana Gowda G.A., Gowda Y.N., Raftery D. Expanding the limits of human blood metabolite quantitation using NMR spectroscopy. Anal Chem 2015;87(1):706–15. DOI: 10.1021/ac503651e
23. Overview of NMR spectroscopy-based metabolomics: opportunities and challenges. In: NMR-Based Metabolomics: Methods and Protocols. Eds.: G.A. Gowda, D. Raftery. Vol. 2037. New York, NY, USA: Humana Press, 2019. Pp. 3–14.
24. Dumas M.E., Maibaum E.C., Teague C. et al. Assessment of analytical reproducibility of 1H NMR spectroscopy based metabonomics for large-scale epidemiological research: the INTERMAP Study. Anal Chem 2006;78(7):2199–208. DOI: 10.1021/ac0517085
25. Sharma U., Jagannathan N.R. Metabolism of prostate cancer by Magnetic Resonance Spectroscopy (MRS). Biophys Rev 2020;12(5):1163–73. DOI: 10.1007/s12551-020-00758-6
26. Lima A.R., Bastos Mde L., Carvalho M., Guedes de Pinho P. Biomarker discovery in human prostate cancer: an update in metabolomics studies. Transl Oncol 2016;9(4):357–70. DOI: 10.1016/j.tranon.2016.05.004
27. Wishart D.S., Djoumbou Feunang Y., Marcu A. et al. HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 2018;46(D1):D608–17. DOI: 10.1093/nar/gkx1089
28. Nagana Gowda G.A., Raftery D. Biomarker discovery and translation in metabolomics. Curr Metabolomics 2013;1(3):227–40. DOI: 10.2174/2213235X113019990005
29. Dakubo G.D., Parr R.L., Costello L.C. et al. Altered metabolism and mitochondrial genome in prostate cancer. J Clin Pathol 2006;59(1):10–6. DOI: 10.1136/jcp.2005.027664
30. Costello L.C., Feng P., Milon B. et al. Role of zinc in the pathogenesis and treatment of prostate cancer: critical issues to resolve. Prostate Cancer Prostatic Dis 2004;7(2):111–7. DOI: 10.1038/sj.pcan.4500712
31. Costello L.C., Franklin R.B. A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys 2016;611:100–12. DOI: 10.1016/j.abb.2016.04.014
32. Eidelman E., Twum-Ampofo J., Ansari J., Minhaj Siddiqui M. The metabolic phenotype of prostate cancer. Front Oncol 2017;7:131. DOI: 10.3389/fonc.2017.00131
33. Andersen M.K., Giskeødegård G.F., Tessem M.B. Metabolic alterations in tissues and biofluids of patients with prostate cancer. Curr Opin Endocrine Metabol Res 2020;10:23–8.
34. Kwon H., Oh S., Jin X. et al. Cancer metabolomics in basic science perspective. Arch Pharm Res 2015;38(3):372–80. DOI: 10.1007/s12272-015-0552-4
35. Warburg O. On the origin of cancer cells. Science 1956;123(3191):309–14. DOI: 10.1126/science.123.3191.309
36. Sadeghi R.N., Karami-Tehrani F., Salami S. Targeting prostate cancer cell metabolism: impact of hexokinase and CPT-1 enzymes. Tumour Biol 2015;36(4):2893–2905. DOI: 10.1007/s13277-014-2919-4
37. Twum-Ampofo J., Fu D.X., Passaniti A. et al. Metabolic targets for potential prostate cancer therapeutics. Curr Opin Oncol 2016;28(3):241–7. DOI: 10.1097/CCO.0000000000000276
38. Dueregger A., Schöpf B., Eder T. et al. Differential utilization of dietary fatty acids in benign and malignant cells of the prostate. PLoS One 2015;10(8):e0135704. DOI: 10.1371/journal.pone.0135704
39. Zadra G., Loda M. Metabolic vulnerabilities of prostate cancer: diagnostic and therapeutic opportunities. Cold Spring Harb Perspect Med 2018;8(10):a030569. DOI: 10.1101/cshperspect.a030569
40. Lloyd S.M., Arnold J., Sreekumar A. Metabolomic profiling of hormone-dependent cancers: a bird’s eye view. Trends Endocrinol Metab 2015;26(9):477–85. DOI: 10.1016/j.tem.2015.07.001
41. Schipper R.G., Romijn J.C., Cuijpers V.M.J.I., Verhofstad A.A.J. Polyamines and prostatic cancer. Biochem Soc Trans 2003;31(2):375–80. DOI: 10.1042/bst0310375
42. Feun L., You M., Wu C.J. et al. Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des 2008;14(11):1049–57. DOI: 10.2174/138161208784246199
43. Qiu F., Huang J., Sui M. Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett 2015;364(1):1–7. DOI: 10.1016/j.canlet.2015.04.020
44. Wang H., Zhang L., Fu Y. et al. CSL regulates AKT to mediate androgen independence in prostate cancer progression. Prostate 2016;76(2):140–50. DOI: 10.1002/pros.23104
45. Mithal P., Allott E., Gerber L. et al. PTEN loss in biopsy tissue predicts poor clinical outcomes in prostate cancer. Int J Urol 2014;21(12):1209–14. DOI: 10.1111/iju.12571
46. Tennakoon J.B., Shi Y., Han J.J. et al. Androgens regulate prostate cancer cell growth via an AMPK-PGC-1α-mediated metabolic switch. Oncogene 2014;33(45):5251–61. DOI: 10.1038/onc.2013.463
47. Zadra G., Photopoulos C., Tyekucheva S. et al. A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol Med 2014;6(4):519–38. DOI: 10.1002/emmm.201302734
48. Sanli T., Steinberg G.R., Singh G., Tsakiridis T. AMP-activated protein kinase (AMPK) beyond metabolism: a novel genomic stress sensor participating in the DNA damage response pathway. Cancer Biol Ther 2014;15(2):156–69. DOI: 10.4161/cbt.26726
49. Kumar D., Gupta A., Mandhani A., Narain Sankhwar S. NMR spectroscopy of filtered serum of prostate cancer: a new frontier in metabolomics. Prostate 2016;76(12):1106–19. DOI: 10.1002/pros.23198
50. Zniber M., Vahdatiyekta P., Huynh T.P. Discrimination of serum samples of prostate cancer and benign prostatic hyperplasia with 1 H-NMR metabolomics. Anal Methods 2024;16(41):7043–53. DOI: 10.1039/d4ay01109k
51. Kumar D., Gupta A., Mandhani A., Narain Sankhwar S. Metabolomics-derived prostate cancer biomarkers: fact or fiction? J Proteome Res 2015;14(3):1455–64. DOI: 10.1021/pr5011108
52. Gomez-Cebrian N., García-Flores M., Rubio-Briones J. et al. Targeted metabolomics analyses reveal specific metabolic alterations in high-grade prostate cancer patients. J Proteome Res 2020;19(10):4082–92. DOI: 10.1021/acs.jproteome.0c00493
53. Zhang X., Xia B., Zheng H. et al. Identification of characteristic metabolic panels for different stages of prostate cancer by 1H NMR-based metabolomics analysis. J Translat Med 2022;20(1):275. DOI: 10.1186/s12967-022-03478-5
Review
For citations:
Perepukhov V.M., Nyushko K.M., Alekseev B.Ya., Mailyan O.A. Review of the effectiveness of nuclear magnetic resonance spectroscopy for prostate cancer diagnosis. Cancer Urology. 2025;21(2):182-191. (In Russ.) https://doi.org/10.17650/1726-9776-2025-21-2-182-191