Preview

Онкоурология

Расширенный поиск

Биомаркеры, определяющие лечебную тактику при метастатическом уротелиальном раке

https://doi.org/10.17650/1726-9776-2023-19-2-111-126

Аннотация

Внедрение в клиническую практику инновационных методов лекарственной терапии и биотерапии существенно изменило тактику лечения метастатического уротелиального рака. В настоящее время лечебные схемы успешно дополняются иммунотерапией (ингибиторы иммунных контрольных точек) или таргетной терапией, и эффективность таких комбинаций может быть достаточно высокой, но оптимальную последовательность различных видов лекарственной терапии еще предстоит установить. Для выбора правильной последовательности назначения препаратов необходима разработка алгоритмов с применением надежных биомаркеров. До настоящего времени основополагающими маркерами выбора альтернативных схем лечения при метастатическом уротелиальном раке были экспрессия лиганда программируемой клеточной гибели 1 (PD-L1) и изменение рецепторов фактора роста фибробластов 1–4-го типов (FGFR1–4). Список полезных и достаточно информативных биомаркеров расширяется. В статье суммированы данные относительно изученных биологических маркеров для выбора тактики лечения метастатического уротелиального рака.

Об авторах

Л. Ю. Гривцова
Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России
Россия

 Россия, 249031 Обнинск, ул. Королева, 4 



О. Б. Карякин
Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России
Россия

 Россия, 249031 Обнинск, ул. Королева, 4 



М. Г. Сядрин
Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России
Россия

 Россия, 249031 Обнинск, ул. Королева, 4 



С. М. Самборский
Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России
Россия

Станислав Михайлович Самборский

Россия, 249031 Обнинск, ул. Королева, 4 

 



С. А. Иванов
Медицинский радиологический научный центр им. А.Ф. Цыба – филиал ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России; ФГАОУ ВО «Российский университет дружбы народов»
Россия

Россия, 249031 Обнинск, ул. Королева, 4

Россия, 117198 Москва, ул. Миклухо-Маклая, 6 



А. Д. Каприн
ФГАОУ ВО «Российский университет дружбы народов»; ФГБУ «Национальный медицинский исследовательский центр радиологии» Минздрава России

Россия, 117198 Москва, ул. Миклухо-Маклая, 6

Россия, 125284 Москва, 2-й Боткинский пр-д, 3



Список литературы

1. Bellmunt J., Théodore C., Demkov T. et al. Phase III trial of vinflunine plus best supportive care compared with best supportive care alone after a platinum-containing regimen in patients with advanced transitional cell carcinoma of the urothelial tract. J Clin Oncol 2009;27(27):4454–61. DOI: 10.1200/JCO.2008.20.5534

2. McCaffrey J.A., Hilton S., Mazumdar M. et al. Phase II trial of docetaxel in patients with advanced or metastatic transitional-cell carcinoma. J Clin Oncol 1997;15(5):1853–7. DOI: 10.1200/JCO.1997.15.5.1853

3. Szklener K., Chmiel P., Michalski A., Mańdziuk S. New directions and challenges in targeted therapies of advanced bladder cancer: the role of FGFR inhibitors. Cancers 2022;14(6):1416. DOI: 10.3390/cancers14061416

4. Khalife N., Chahine C., Kordahi M. et al. Urothelial carcinoma in the era of immune checkpoint inhibitors. Immunotherapy 2021;13(11):953–64. DOI: 10.2217/imt-2021-0042

5. Heath E.I., Rosenberg J.E. The biology and rationale of targeting nectin–4 in urothelial carcinoma. Nat Rev Urol 2021;18(2):93–103. DOI: 10.1038/s41585-020-00394-5

6. Tagawa S.T., Balar A.V., Petrylak D.P. et al. TROPHY-U-01: a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinumbased chemotherapy and checkpoint inhibitors abstract. J Clin Oncol 2021;39(22):2474–85. DOI: 10.1200/JCO.20.03489

7. Powles T., Park S.H., Voog E. et al. Avelumab maintenance therapy for advanced or metastatic urothelial carcinoma. N Engl J Med 2020;383(13):1218–30. DOI: 10.1056/NEJMoa2002788

8. Bellmunt J., de Wit R., Vaughn D.J. et al. KEYNOTE-045 Investigators. Pembrolizumab as second-line therapy for advanced urothelial carcinoma. N Engl J Med 2017;376(11):1015–26. DOI: 10.1056/NEJMoa1613683

9. Powles T., Rosenberg J.E., Sonpavde G.P. et al. Enfortumab vedotin in previously treated advanced urothelial carcinoma. N Engl J Med 2021;384(12):1125–35. DOI: 10.1056/NEJMoa2035807

10. Loriot Y., Balar A., Petrylak D. et al. LBA24 TROPHY-U-01 cohort 1 final results: a phase II study of sacituzumab govitecan (SG) in metastatic urothelial cancer (mUC) that has progressed after platinum (PLT) and checkpoint inhibitors (CPI). Ann Oncol 2020;31:1142–215.

11. Loriot Y., Necchi A., Park S.H. et al. BLC2001 Study Group. Erdafitinib in locally advanced or metastatic urothelial carcinoma. N Engl J Med 2019;381(4):338–48. DOI: 10.1056/NEJMoa1817323

12. Loehrer Sr P.J., Einhorn L.H., Elson P.J. et al. A randomized comparison of cisplatin alone or in combination with methotrexate,vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J Clin Oncol 1992;10(7):1066–73. DOI: 10.1200/JCO.1992.10.7.1066

13. Logothetis C.J., Dexeus F.H., Finn L. et al. A prospective randomized trial comparing MVAC and CISCA chemotherapy for patients with metastatic urothelial tumors. J Clin Oncol 1990;8(6):1050–5. DOI: 10.1200/JCO.1990.8.6.1050

14. Von der Maase H., Hansen S.W., Roberts J.T. et al. Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin, and cisplatin in advanced or metastatic bladder cancer: results of a large, randomized, multinational, multicenter, phase III study. J Clin Oncol 2000;18(17):3068–77. DOI: 10.1200/JCO.2000.18.17.3068

15. Galsky M.D., Arija J.Á.A., Bamias A. et al. Atezolizumab with or without chemotherapy in metastatic urothelial cancer (IMvigor130): a multicentre, randomised, placebo-controlled phase 3 trial. Lancet 2020;395(10236):1547–57. DOI: 10.1016/S0140-6736(20)30230-0

16. Powles T., Csőszi T., Özgüroğlu M. et al. Pembrolizumab alone or combined with chemotherapy versus chemotherapy as first-line therapy for advanced urothelial carcinoma (KEYNOTE-361): a randomised, open-label, phase 3 trial. Lancet Oncol 2021;22(7):931–45. DOI: 10.1016/S1470-2045(21)00152-2

17. Powles T., van der Heijden M.S., Castellano D. et al. Durvalumab alone and durvalumab plus tremelimumab versus hemotherapy in previously untreated patients with unresectable, locally advanced or metastatic urothelial carcinoma (DANUBE): a randomised, openlabel, multicentre, phase 3 trial. Lancet Oncol 2020;21(12):1574–88. DOI: 10.1016/S1470-2045(20)30541-6

18. Rosenberg J.E., Flaig T.W., Friedlander T.W. et al. Study EV-103: durability results of enfortumab vedotin plus pembrolizumab for locally advanced or metastatic urothelial carcinoma. J Clin Oncol 2020;38:5044 (2021;39(15):4528).

19. Li X., Heyer W.D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Res 2008;18(1):99–113. DOI: 10.1038/cr.2008.1

20. Reardon J.T., Vaisman A., Chaney S.G., Sancar A. Efficient nucleotide excision repair of cisplatin, oxaliplatin, and bis-acetoammine-dichloro-cyclohexylamine-platinum(IV) (JM216) platinum intrastrand DNA diadducts. Cancer Res 1999;59(16):3968–71.

21. Lord R.V.N., Brabender J., Gandara D. et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 2002;8(7):2286–91.

22. Britten R.A., Liu D., Tessier A. et al. ERCC1 expression as a molecular marker of cisplatin resistance in human cervical tumor cells. Int J Cancer 2000;89(5):453–7.

23. Olaussen K.A., Dunant A., Fouret P. et al. IALT Bio Investigators. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatinbased adjuvant chemotherapy. N Engl J Med 2006;355(10):983–91. DOI: 10.1056/NEJMoa060570

24. Dabholkar M., Vionnet J., Bostick-Bruton F. et al. Messenger RNA levels of XPAC and ERCC1 in ovarian cancer tissue correlate with response to platinum-based chemotherapy. J Clin Invest 1994;94(2):703–8. DOI: 10.1172/JCI117388

25. Metzger R., Leichman C.G., Danenberg K.D. et al. ERCC1 mRNA levels complement thymidylate synthase mRNA levels in predicting response and survival for gastric cancer patients receiving combination cisplatin and fluorouracil chemotherapy. J Clin Oncol 1998;16(1):309–16. DOI: 10.1200/JCO.1998.16.1.309

26. Shirota Y., Stoehlmacher J., Brabender J. et al. ERCC1 and thymidylate synthase mRNA levels predict survival for colorectal cancer patients receiving combination oxaliplatin and fluorouracil chemotherapy. J Clin Oncol 2001;19(23):4298–304. DOI: 10.1200/JCO.2001.19.23.4298

27. Klatte T., Seitz C., Rink M. et al. ERCC1 as a prognostic and predictive biomarker for urothelial carcinoma of the bladder following radical cystectomy. J Urol 2015;194(5):1456–62. DOI: 10.1016/j.juro.2015.06.099

28. Necchi A., Lo Vullo S., Raggi D. et al. Neoadjuvant sorafenib, gemcitabine, and cisplatin administration preceding cystectomy in patients with muscle-invasive urothelial bladder carcinoma: an open-label, single-arm, single-center, phase 2 study. Urol Oncol 2018;36(1):8.e1–8. DOI: 10.1016/j.urolonc.2017.08.020

29. Hemdan T., Segersten U., Malmström P. 122 ERCC1-negative tumors benefit from neoadjuvant cisplatin-based chemotherapy whereas patients with ERCC1-positive tumors do not – results from a cystectomy trial database. Eur Urol 2014;13(1):e122.

30. Choueiri T.K., Jacobus S., Bellmunt J. et al. Neoadjuvant dosedense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J Clin Oncol 2014;32(18):1889–94. DOI: 10.1200/JCO.2013.52.4785

31. Sakano S., Ogawa S., Yamamoto Y. et al. ERCC1 and XRCC1 expression predicts survival in bladder cancer patients receiving combined trimodality therapy. Mol Clin Oncol 2013;1(3):403–10. DOI: 10.3892/mco.2013.85

32. Sun J.M., Sung J.Y., Park S.H. et al. ERCC1 as a biomarker for bladder cancer patients likely to benefit from adjuvant chemotherapy. BMC Cancer 2012;12:187. DOI: 10.1186/1471-2407-12-187

33. Kawashima A., Takayama H., Kawamura N. et al. Co-expression of ERCC1 and Snail is a prognostic but not predictive factor of cisplatin-based neoadjuvant chemotherapy for bladder cancer. Oncol Lett 2012;4(1):15–21. DOI: 10.3892/ol.2012.689

34. Ozcan M.F., Dizdar O., Dincer N. et al. Low ERCC1 expression is associated with prolonged survival in patients with bladder cancer receiving platinum–based neoadjuvant chemotherapy. Urol Oncol 2013;31(8):1709–15. DOI: 10.1016/j.urolonc.2012.06.014

35. Nikitas N., Karadimou A., Tsitoura E. et al. Association of ERCC1 SNPs with outcome in platinum–treated patients with advanced urothelial cancer: a Hellenic Cooperative Oncology Group study. Pharmacogenomics 2012;13(14):1595–607. DOI: 10.2217/pgs.12.162

36. Kim K.H., Do I.G., Kim H.S. et al. Excision repair cross-complementation group 1 (ERCC1) expression in advanced urothelial carcinoma patients receiving cisplatin–based chemotherapy. APMIS 2010;118(12):941–8. DOI: 10.1111/j.1600-0463.2010.02648.x

37. Hoffmann A.C., Wild P., Leicht C. et al. MDR1 and ERCC1 expression predict outcome of patients with locally advanced bladder cancer receiving adjuvant chemotherapy. Neoplasia 2010;12(8):628–36. DOI: 10.1593/neo.10402

38. Bellmunt J., Paz-Ares L., Cuello M. et al. Spanish Oncology Genitourinary Group. Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol 2007;18(3):522–8. DOI: 10.1093/annonc/mdl435

39. Urun Y., Leow J.J., Fay A.P. et al. ERCC1 as a prognostic factor for survival in patients with advanced urothelial cancer treated with platinum based chemotherapy: a systematic review and meta-analysis. Crit Rev Oncol Hematol 2017;120:120–6. DOI: 10.1016/j.critrevonc.2017.10.012

40. Li Q., Damish A.W., Frazier Z. et al. ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle–invasive bladder cancer. Clin Cancer Res 2019;25(3):977–88. DOI: 10.1158/1078-0432.CCR-18-1001

41. Van Allen E.M., Mouw K.W., Kim P. et al. Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov 2014;4(10):1140–53. DOI: 10.1158/2159-8290.CD-14-0623

42. Liu D., Plimack E.R., Hoffman-Censits J. et al. Clinical validation of chemotherapy response biomarker ERCC2 in muscle-invasive urothelial bladder carcinoma. JAMA Oncol 2016;2(8):1094–6. DOI: 10.1001/jamaoncol.2016.1056

43. Christensen E., Birkenkamp-Demtröder K., Sethi H. et al. Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol 2019;37(18):1547–57. DOI: 10.1200/JCO.18.02052

44. Groenendijk F.H., de Jong J., Fransen van de Putte E.E. et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur Urol 2016;69(3):384–8. DOI: 10.1016/j.eururo.2015.01.014

45. Groenendijk F.H., Fransen van de Putte E.E., van Rhijn B.W. et al. Garraway and Jonathan E. Rosenberg’s Letter to the Editor re: Groenendijk F.H., de Jong J., Fransen van de Putte E.E. et al. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur Urol 2015;68(2):e33–4.

46. Taber A., Christensen E., Lamy P. et al. Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multiomics analysis. Nat Commun 2020;11(1):4858. DOI: 10.1038/s41467-020-18640-0

47. Kim J., Mouw K.W., Polak P. et al. Somatic ERCC2 mutations are associated with a distinct genomic signature in urothelial tumors. Nat Genet 2016;48(6):600–6. DOI: 10.1038/ng.3557

48. Galsky M.D., Daneshmand S., Chan K.G. et al. Phase 2 trial of gemcitabine, cisplatin, plus nivolumab with selective bladder sparing in patients with muscle-invasive bladder cancer (MIBC): HCRN GU16-257. J Clin Oncol 2021;39:4503.

49. Yang D., Khan S., Sun Y. et al. Association of BRCA1 and BRCA2 mutations with survival, chemotherapy sensitivity, and gene mutator phenotype in patients with ovarian cancer. JAMA 2011;306(14):1557–65. DOI: 10.1001/jama.2011.1456

50. Sakai W., Swisher E.M., Karlan B.Y. et al. Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers. Nature 2008;451(7182):1116–20. DOI: 10.1038/nature06633

51. Tutt A., Tovey H., Cheang M.C.U. et al. Carboplatin in BRCA1/2-mutated and triple-negative breast cancer BRCAness subgroups: the TNT Trial. Nat Med 2018;24(5):628–37. DOI: 10.1038/s41591-018-0009-7

52. Robertson A.G., Kim J., Al-Ahmadie H. et al. TCGA Research Network. Comprehensive molecular characterization of muscleinvasive bladder cancer. Cell 2017;171(3):540–56.e25.

53. Carlo M.I., Ravichandran V., Srinavasan P. et al. Cancer susceptibility mutations in patients with urothelial malignancies. J Clin Oncol 2020;38(5):406–14. DOI: 10.1200/JCO.19.01395

54. Nassar A.H., Abou Alaiwi S., AlDubayan S.H. et al. Prevalence of pathogenic germline cancer risk variants in high-risk urothelial carcinoma. Genet Med 2020;22(4):709–18. DOI: 10.1038/s41436-019-0720-x

55. Mullane S.A., Werner L., Guancial E.A. et al. Expression levels of DNA damage repair proteins are associated with overall survival in platinum-treated advanced urothelial carcinoma. Clin Genitourin Cancer 2016;14(4):352–9. DOI: 10.1016/j.clgc.2015.12.029

56. Lord C.J., Ashworth A. RAD51, BRCA2 and DNA repair: a partial resolution. Nat Struct Mol Biol 2007;14(6):461–2. DOI: 10.1038/nsmb0607-461

57. Plimack E.R., Dunbrack R.L., Brennan T.A. et al. Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur Urol 2015;68(6):959–67. DOI: 10.1016/j.eururo.2015.07.009

58. Miron B., Ross E.A., Anari F. et al. Defects in DNA repair genes and long-term survival in cisplatin-based neoadjuvant chemotherapy for muscle invasive bladder cancer (MIBC). J Clin Oncol 2019;37:4536.

59. Teo M.Y., Bambury R.M., Zabor E.C. et al. DNA damage response and repair gene alterations are associated with improved survival in patients with platinum-treated advanced urothelial carcinoma. Clin Cancer Res 2017;23(14):3610–8. DOI: 10.1016/j.urolonc.2018.05.011

60. Rosenberg J.E., Ballman K.A., Halabi S. et al. Randomized phase III trial of gemcitabine and cisplatin with bevacizumab or placebo in patients with advanced urothelial carcinoma: results of CALGB 90601 (Alliance). J Clin Oncol 2021;39(22):2486–96. DOI: 10.1200/JCO.21.00286

61. Geynisman D.M., Abbosh P., Ross E.A. et al. A phase II trial of risk enabled therapy after initiating neoadjuvant chemotherapy for bladder cancer (RETAIN BLADDER): interim analysis. J Clin Oncol 2021;39(6):397.

62. Powles T., Loriot Y., Bellmunt J. et al. 699O avelumab first-line (1L) maintenance + best supportive care (BSC) vs BSC alone for advanced urothelial carcinoma (UC): association between clinical outcomes and exploratory biomarkers. Ann Oncol 2020;31(4):552–3. DOI: 10.1016/j.annonc.2020.08.771

63. Powles T., Assaf Z.J., Davarpanah N. et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021;595(7867): 432–7. DOI: 10.1038/s41586-021-03642-9

64. Bellmunt J., Hussain M., Gschwend J.E. et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol 2021;22(4):525–37. DOI: 10.1016/S1470-2045(21)00004-8

65. Kamoun A., de Reyniès A., Allory Y. et al. Bladder Cancer Molecular Taxonomy Group. A consensus molecular classification of muscleinvasive bladder cancer. Eur Urol 2020;77(4):420–33. DOI: 10.1016/j.eururo.2019.09.006

66. Wang L., Gong Y., Saci A. et al. Fibroblast growth factor receptor 3 alterations and response to PD-1/PD-L1 blockade in patients with metastatic urothelial cancer. Eur Urol 2019;76(5):599–603. DOI: 10.1016/j.eururo.2019.06.025

67. Rose T.L., Weir W.H., Mayhew G.M. et al. Fibroblast growth factor receptor 3 alterations and response to immune checkpoint inhibition in metastatic urothelial cancer: a real world experience. Br J Cancer 2021;125(9):1251–60. DOI: 10.1038/s41416-021-01488-6

68. Powles T., Carroll D., Chowdhury S. et al. An adaptive, biomarkerdirected platform study of durvalumab in combination with targeted therapies in advanced urothelial cancer. Nat Med 2021;27(5):793–801. DOI: 10.1038/s41591-021-01317-6

69. Sharma P., Retz M., Siefker-Radtke A. et al. Nivolumab in metastatic urothelial carcinoma after platinum therapy (CheckMate 275): a multicentre, single-arm, phase 2 trial. Lancet Oncol 2017;18(3):312–22. DOI: 10.1016/S1470-2045(17)30065-7

70. Powles T., O’Donnell P.H., Massard C. et al. Efficacy and safety of durvalumab in locally advanced or metastatic urothelial carcinoma: updated results from a phase 1/2 Open-label study. JAMA Oncol 2017;3(9):e172411. DOI: 10.1001/jamaoncol.2017.2411

71. FDA alerts health care professionals and oncology clinical investigators about an efficacy issue identified in clinical trials for some patients taking keytruda (pembrolizumab) or tecentriq (atezolizumab) as monotherapy to treat urothelial cancer with low expression of PD-L1. Available at: https://www.fda.gov/drugs/drugsafety-and-availability/fda-alerts-health-care-professionals-andoncologyclinical-investigators-about-efficacy-issue.

72. Galsky M.D., Necchi A., Sridhar S.S. et al. A phase III, randomized, open-label, multicenter, global study of first-line durvalumab plus standard of care (SoC) chemotherapy and durvalumab plus tremelimumab, and SoC chemotherapy versus SoC chemotherapy alone in unresectable locally advanced or metastatic urothelial cancer (NILE). J Clin Oncol 2021;39(6):TPS504. DOI: 10.1200/JCO.2021.39.6_suppl.TPS504

73. Rui X., Gu T.T., Pan H.F., Zhang H.Z. Evaluation of PD-L1 biomarker for immune checkpoint inhibitor (PD-1/PD-L1 inhibitors) treatments for urothelial carcinoma patients: a metaanalysis. Int Immunopharmacol 2019;67:378–85. DOI: 10.1016/j.intimp.2018.12.018

74. Litchfield K., Reading J.L., Puttick C. et al. Meta-analysis of tumorand T cell-intrinsic mechanisms of sensitization to checkpoint inhibition. Cell 2021;184(3):596–614.e14. DOI: 10.1016/j.cell.2021.01.002

75. Powles T., Durán I., van der Heijden M.S. et al. Atezolizumab versus chemotherapy in patients with platinum-treated locally advanced or metastatic urothelial carcinoma (IMvigor211): a multicentre, open-label, phase 3 randomised controlled trial. Lancet 2018;391(10122):748–57. DOI: 10.1016/S0140-6736(17)33297-X

76. Hirsch F.R., McElhinny A., Stanforth D. et al. PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the blueprint PD-L1 IHC assay comparison project. J Thorac Oncol 2017;12(2):208–22. DOI: 10.1016/j.jtho.2016.11.2228

77. Ratcliffe M.J., Sharpe A., Midha A. et al. Agreement between programmed cell death ligand-1 diagnostic assays across multiple protein expression cutoffs in non-small cell lung cancer. Clin Cancer Res 2017;23(14):3585–91. DOI: 10.1158/1078-0432.CCR-16-2375

78. Tsao M.S., Kerr K.M., Kockx M. et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: results of blueprint phase 2 project. J Thorac Oncol 2018;13(9):1302–11. DOI: 10.1016/j.jtho.2018.05.013

79. Decazes P., Bohn P. Immunotherapy by immune checkpoint inhibitors and nuclear medicine imaging: current and future applications. Cancers (Basel) 2020;12(2):371. DOI: 10.3390/cancers12020371

80. Bensch F., van der Veen E.L., Lub-de Hooge M.N. et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 2018;24(12):1852–8. DOI: 10.1038/s41591-018-0255-8

81. Niemeijer A.N., Leung D., Huisman M.C. et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with nonsmallcell lung cancer. Nat Commun 2018;9(1):4664. DOI: 10.1038/s41467-018-07131-y

82. Alexandrov L.B., Nik-Zainal S., Wedge D.C. et al. Signatures of mutational processes in human cancer. Nature 2013;500(7463): 415–21. DOI: 10.1016/j.celrep.2012.12.008

83. Rosenberg J.E., Hoffman-Censits J., Powles T. et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet 2016;387(10031):1909–20. DOI: 10.1016/S0140-6736(16)00561-4

84. Samstein R.M., Lee C.H., Shoushtari A.N. et al. Tumor mutational load predicts survival after immunotherapy across multiple cancer types. Nat Genet 2019;51(2):202–6. DOI: 10.1038/s41588-018-0312-8

85. Mariathasan S., Turley S.J., Nickles D. et al. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018;554(7693):544–8. DOI: 10.1038/nature25501

86. Bellmunt J., de Wit R., Fradet Y. et al. 747P association of TMB with efficacy of pembrolizumab (pembro) in patients (pts) with advanced urothelial cancer (UC): results from KEYNOTE-045 and KEYNOTE-052. Ann Oncol 2020;31(suppl 4):580–1. DOI: 10.1016/j.annonc.2020.08.819

87. FDA approves pembrolizumab for adults and children with TMB-H solid tumors. Available at: https://www.fda.gov/drugs/drugapprovals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors.

88. Yarchoan M., Albacker L.A., Hopkins A.C. et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 2019;4(6):126908. DOI: 10.1172/jci.insight.126908

89. Galsky M.D., Saci A., Szabo P.M. et al. Nivolumab in patients with advanced platinum-resistant urothelial carcinoma: efficacy, safety, and biomarker analyses with extended follow-up from checkmate 275. Clin Cancer Res 2020;26(19):5120–8. DOI: 10.1158/1078-0432.CCR-19-416

90. Galsky M.D., Banchereau R., Hamidi H.R. et al. Tumor, immune, and stromal characteristics associated with clinical outcomes with atezolizumab (atezo) + platinum-based chemotherapy (PBC) or atezo monotherapy (mono) versus PBC in metastatic urothelial cancer (mUC) from the phase III IMvigor130 study. J Clin Oncol 2020;38:5011. DOI: 10.1200/JCO.2020.38.15_suppl.5011

91. Valero C., Lee M., Hoen D. et al. Response rates to anti-PD-1 Immunotherapy in microsatellite-stable solid tumors with 10 or more mutations per megabase. JAMA Oncol 2021;7(5):739–43. DOI: 10.1001/jamaoncol.2020.7684

92. McGranahan N., Rosenthal R., Hiley C.T. et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell 2017;171(6):1259–71.e11. DOI: 10.1016/j.cell.2017.10.001

93. Zhang J., Bu X., Wang H. et al. Cyclin D-CDK4 kinase destabilizes PD-L1 via cullin 3-SPOP to control cancer immune surveillance. Nature 2018;553(7686):91–5. DOI: 10.1038/nature25015

94. Wang L., Saci A., Szabo P.M. et al. EMT- and stroma-related gene expression and resistance to PD-1 blockade in urothelial cancer. Nat Commun 2018;9(1):3503. DOI: 10.1038/s41467-018-05992-x

95. Calon A., Lonardo E., Berenguer-Llergo A. et al. Stromal gene expression defines poor-prognosis subtypes in colorectal cancer. Nat Genet 2015;47(4):320–9. DOI: 10.1038/ng.3225

96. Massagué J. TGFbeta in cancer. Cell 2008;134(2):215–30. DOI: 10.1016/j.cell.2008.07.001

97. Lin R.L., Zhao L.J. Mechanistic basis and clinical relevance of the role of transforming growth factor-β in cancer. Cancer Biol Med 2015;12(4):385–93. DOI: 10.7497/j.issn.2095-3941.2015.0015

98. O’Donnell P.H., Grivas P., Balar A.V. et al. Biomarker findings and mature clinical results from KEYNOTE-052: first-line pembrolizumab (pembro) in cisplatin-ineligible advanced urothelial cancer (UC). J Clin Oncol 2017;35:4502. DOI: 10.1200/JCO.2017.35.15_SUPPL.4502

99. Chen B., Khodadoust M.S., Liu C.L. et al. Profiling tumor infiltrating immune cells with CIBERSORT. Methods Mol Biol 2018;1711:243–59. DOI: 10.1007/978-1-4939-7493-1_12

100. Aran D., Hu Z., Butte A.J. xCell: digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 2017;18(1):220. DOI: 10.1186/s13059-017-1349-1

101. Cao J., Yang X., Li J. et al. Screening and identifying immunerelated cells and genes in the tumor microenvironment of bladder urothelial carcinoma: based on TCGA database and bioinformatics. Front Oncol 2019;9:1533. DOI: 10.3389/fonc.2019.01533

102. Gohil S.H., Iorgulescu J.B., Braun D.A. et al. Applying highdimensional single-cell technologies to the analysis of cancer immunotherapy. Nat Rev Clin Oncol 2021;18(4):244–56. DOI: 10.1038/s41571-020-00449-x

103. Guruprasad P., Lee Y.G., Kim K.H., Ruella M. The current landscape of single-cell transcriptomics for cancer immunotherapy. J Exp Med 2021;218(1):e20201574. DOI: 10.1084/jem.20201574

104. Oh D.Y., Kwek S.S., Raju S.S. et al. Intratumoral CD4+ T cells mediate anti-tumor cytotoxicity in human bladder cancer. Cell 2020;181(7):1612–25.e13. DOI: 10.1016/j.cell.2020.05.017

105. Chen Z., Zhou L., Liu L. et al. Single-cell RNA sequencing highlights the role of inflammatory cancer-associated fibroblasts in bladder urothelial carcinoma. Nat Commun 2020;11(1):5077. DOI: 10.1038/s41467-020-18916-5

106. Sfakianos J.P., Daza J., Hu Y. et al. Epithelial plasticity can generate multi-lineage phenotypes in human and murine bladder cancers. Nat Commun 2020;11(1):2540. DOI: 10.1038/s41467-020-16162-3

107. Mota J.M., Leite C.A., Souza L.E. et al. Post-sepsis state induces tumor-associated macrophage accumulation through CXCR4/CXCL12 and favors tumor progression in mice. Cancer Immunol Res 2016;4(4):312–22. DOI: 10.1158/2326-6066.CIR-15-0170

108. Wang L., Sfakianos J.P., Beaumont K.G. et al. Myeloid cell-associated resistance to PD-1/PD-L1 blockade in urothelial cancer revealed through bulk and single-cell RNA sequencing. Clin Cancer Res 2021;27(15):4287–300. DOI: 10.1158/1078-0432.CCR-20-4574

109. Siefker-Radtke A.O., Necchi A., Park S.H. et al. ERDAFITINIB in locally advanced or metastatic urothelial carcinoma (mUC): long-term outcomes in BLC2001. J Clin Oncol 2020;38(15):5015. DOI: 10.1200/JCO.2020.38.15_suppl.5015

110. Challita-Eid P.M., Satpayev D., Yang P. et al. Enfortumab vedotin antibody-drug conjugate targeting nectin-4 is a highly potent therapeutic agent in multiple preclinical cancer models. Cancer Res 2016;76(10):3003–13. DOI: 10.1158/0008-5472.CAN-15-1313

111. Doronina S.O., Toki B.E., Torgov M.Y. et al. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol 2003;21(7):778–84. DOI: 10.1038/nbt832

112. Itoh N., Ornitz D.M. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J Biochem 2011;149(2):121–30. DOI: 10.1093/jb/mvq121

113. Plotnikov A.N., Schlessinger J., Hubbard S.R., Mohammadi M. Structural basis for FGF receptor dimerization and activation. Cell 1999;98(5):641–50. DOI: 10.1016/s0092-8674(00)80051-3

114. Dieci M.V., Arnedos M., Andre F., Soria J.C. Fibroblast growth factor receptor inhibitors as a cancer treatment: from a biologic rationale to medical perspectives. Cancer Discov 2013;3(3):264–79. DOI: 10.1158/2159-8290.CD-12-0362

115. Di Martino E., Tomlinson D.C., Knowles M.A. A decade of FGF receptor research in bladder cancer: past, present, and future challenges. Adv Urol 2012;2012:429213. DOI: 10.1155/2012/429213

116. Helsten T., Elkin S., Arthur E. et al. The FGFR landscape in cancer: analysis of 4,853 tumors by nextgeneration sequencing. Clin Cancer Res 2016;22(1):259–67. DOI: 10.1158/1078-0432.CCR-14-3212

117. Costa R., Carneiro B.A., Taxter T. et al. FGFR3-TACC3 fusion in solid tumors: mini review. Oncotarget 2016;7(34):55924–38. DOI: 10.1158/1078-0432.CCR-14-3212

118. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 2014;507(7492):315–22. DOI: 10.1038/nature12965

119. Siefker-Radtke A., Loriot Y., Siena S. et al. 752P Updated data from the NORSE trial of erdafitinib (ERDA) plus cetrelimab (CET) in patients (pts) with metastatic or locally advanced urothelial carcinoma (mUC) and specific fibroblast growth factor receptor (FGFR) alterations. Ann Oncol 2020;31:584–5. DOI: 10.1016/j.annonc.2020.08.824

120. Pal S.K., Rosenberg J.E., Hoffman-Censits J.H. et al. Efficacy of BGJ398, a fibroblast growth factor receptor 1–3 inhibitor, in patients with previously treated advanced urothelial carcinoma with FGFR3 alterations. Cancer Discov 2018;8(7):812–21. DOI: 10.1158/2159-8290.CD-18-0229

121. Bellmunt J., Picus J., Kohli M. et al. FIERCE-21: phase 1b/2 study of docetaxel + b-701, a selective inhibitor of FGFR3, in relapsed or refractory (R/R) metastatic urothelial carcinoma (mUCC). J Clin Oncol 2018;36:4534.

122. Necchi A., Castellano D.E., Mellado B. et al. Fierce-21: Phase II study of vofatmab (B-701), a selective inhibitor of FGFR3, as salvage therapy in metastatic urothelial carcinoma (mUC). J Clin Oncol 2019;37:409.

123. Siefker-Radtke A.O., Currie G., Abella E. et al. FIERCE-22: clinical activity of vofatamab (V) a FGFR3 selective inhibitor in combination with pembrolizumab (P) in WT metastatic urothelial carcinoma, preliminary analysis. J Clin Oncol 2019;37:4511. DOI: 10.1200/JCO.2019.37.15_SUPPL.4511

124. Abdul-Karim R.M., Chaudhry A., Patrikidou A. et al. Derazantinib (DZB) in combination with atezolizumab (AZB) in patients with solid tumors: results from the dose-finding phase Ib substudy of FIDES-02. J Clin Oncol 2021;39:437. DOI: 10.1200/JCO.2021.39.6_suppl.437

125. Chaudhry A., Sternberg C.N., De Santis M. et al. FIDES-02, a phase Ib/II study of derazantinib (DZB) as monotherapy and combination therapy with atezolizumab (A) in patients with surgically unresectable or metastaticurothelial cancer (UC) and FGFR genetic aberrations. J Clin Oncol 2020;38:TPS590. DOI: 10.1200/JCO.2020.38.6_suppl.TPS590

126. Quinn D.I., Petrylak D.P., Bellmunt J. et al. FORT-1: phase II/III study of rogaratinib versus chemotherapy (CT) in patients (pts) with locally advanced or metastatic urothelial carcinoma (UC) selected based on FGFR1/3 mRNA expression. J Clin Oncol 2020;38:489.

127. Rosenberg J.E., Gajate P., Morales-Barrera R. et al. Safety and preliminary efficacy of rogaratinib in combination with atezolizumab in a phase Ib/II study (FORT-2) of first-line treatment in cisplatinineligible patients (pts) with locally advanced or metastatic urothelial cancer (UC) and FGFR mRNA overexpression. J Clin Oncol 2020;38(15_suppl):5014. DOI: 10.1200/JCO.2020.38.15_suppl.5014

128. Yue S., Li Y., Chen X. et al. FGFR–TKI resistance in cancer: current status and perspectives. J Hematol Oncol 2021;14(1):23. DOI: 10.1186/s13045-021-01040-2

129. Goyal L., Saha S.K., Liu L.Y. et al. Polyclonal secondary FGFR2 mutations drive acquired resistance to FGFR inhibition in patients with FGFR2 fusion-positive cholangiocarcinoma. Cancer Discov 2017;7(3):252–63. DOI: 10.1158/2159-8290.CD-16-1000

130. Datta J., Damodaran S., Parks H. et al. Akt activation mediates acquired resistance to fibroblast growth factor receptor inhibitor BGJ398. Mol Cancer Ther 2017;16(4):614–24. DOI: 10.1158/1535-7163.MCT-15-1010

131. Wang L., Šuštić T., Leite de Oliveira R. et al. A functional genetic screen identifies the phosphoinositide 3-kinase pathway as a determinant of resistance to fibroblast growth factor receptor inhibitors in FGFR mutant urothelial cell carcinoma. Eur Urol 2017;71(6):858–62. DOI: 10.1016/j.eururo.2017.01.021

132. Ryan M.R., Sohl C.D., Luo B., Anderson K.S. The FGFR1 V561M gatekeeper mutation drives AZD4547 resistance through STAT3 activation and EMT. Mol Cancer Res 2019;17(2):532–43. DOI: 10.1158/1541-7786.MCR-18-0429

133. Mandai K., Rikitake Y., Mori M., Takai Y. Nectins and nectin-like molecules in development and disease. Curr Top Dev Biol 2015;112:197–231. DOI: 10.1016/bs.ctdb.2014.11.019

134. Chu C.E., Sjöström M., Egusa E.A. et al. Heterogeneity in NECTIN4 expression across molecular subtypes of urothelial cancer mediates sensitivity to enfortumab vedotin. Clin Cancer Res 2021;27(18):5123–30. DOI: 10.1158/1078-0432.CCR-20-4175

135. Hoffman-Censits J.H., Lombardo K.A., Parimi V. et al. Expression of nectin-4 in bladder urothelial carcinoma, in morphologic variants, and nonurothelial histotypes. Appl Immunohistochem Mol Morphol 2021;29(8):619–25. DOI: 10.1097/PAI.0000000000000938

136. Rapani E., Sacchetti A., Corda D., Alberti S. Human TROP-2 is a tumor-associated calcium signal transducer. Int J Cancer 1998;76(5):671–6. DOI: 10.1002/(sici)1097-0215(19980529)76:5<671::aid-ijc10>3.0.co;2-7

137. Faltas B., Goldenberg D.M., Ocean A.J. et al. Sacituzumab govitecan, a novel antibody – drug conjugate, in patients with metastatic platinum-resistant urothelial carcinoma. Clin Genitourin Cancer 2016;14(1):e75–9. DOI: 10.1016/j.clgc.2015.10.002

138. Hurvitz S.A., Tolaney S.M., Punie K. et al. Biomarker evaluation in the phase 3 ASCENT study of sacituzumab govitecan versus chemotherapy in patients with metastatic triple-negative breast cancer. Cancer Res 2021;81:Abstract GS3–6.

139. Grivas P., Tagawa S.T., Bellmunt J. et al. TROPiCS-04: study of sacituzumab govitecan in metastatic or locally advanced unresectable urothelial cancer that has progressed after platinum and checkpoint inhibitor therapy. J Clin Oncol 2021;39:TPS498.

140. Drakaki A., Rezazadeh Kalebasty A., Lee J. et al. Phase Ib/II umbrella trial to evaluate the safety and efficacy of multiple 2L cancer immunotherapy (CIT) combinations in advanced/metastatic urothelial carcinoma (mUC): MORPHEUS-mUC. J Clin Oncol 2020;38:TPS591.

141. Iqbal N., Iqbal N. Human epidermal growth factor receptor 2 (HER2) in cancers: overexpression and therapeutic implications. Mol Biol Int 2014;2014:852748. DOI: 10.1155/2014/852748

142. Coogan C.L., Estrada C.R., Kapur S., Bloom K.J. HER-2/neu protein overexpression and gene amplification in human transitional cellcarcinoma of the bladder. Urology 2004;63(4):786–90. DOI: 10.1016/j.urology.2003.10.040

143. Latif Z., Watters A.D., Dunn I. et al. HER2/neu overexpression in the development of muscleinvasive transitional cell carcinoma of the bladder. Br J Cancer 2003;89(7):1305–9. DOI: 10.1038/sj.bjc.6601245

144. Choudhury N.J., Campanile A., Antic T. et al. Afatinib activity in platinum-refractory metastatic urothelial carcinoma in patients with ERBB alterations. J Clin Oncol 2016;34(18):2165–71. DOI: 10.1200/JCO.2015.66.3047

145. Font Pous A., Puente J., Castellano D.E. et al. Phase II trial of afatinib in patients with advanced/metastatic urothelial carcinoma (UC) with genetic alterations in ERBB receptors 1–3 who failed on platinum-based chemotherapy (CT). J Clin Oncol 2018;36(6):TPS540. DOI: 10.1200/JCO.2018.36.6_suppl.TPS540

146. Hainsworth J.D., Meric-Bernstam F., Swanton C. et al. Targeted therapy for advanced solid tumors on the basis of molecular profiles: results from MyPathway, an open-label, phase IIa multiple basket study. J Clin Oncol 2018;36(6):536–42. DOI: 10.1200/JCO.2017.75.3780

147. Sheng X., Zhou A., Yao X. et al. A phase II study of RC48-ADC in HER2-positive patients with locally advanced or metastatic urothelial carcinoma. J Clin Oncol 2019;37(15_suppl):4509. DOI: 10.1200/JCO.2019.37.15_suppl.4509

148. Bob T., Makker V., Buonocore D.J. et al. A multi-histology basket trial of ado-trastuzumab emtansine in patients with HER2 amplified cancers. J Clin Oncol 2018;36(15_suppl):2502. DOI: 10.1200/JCO.2018.36.15_suppl.2502

149. Duan Y., Haybaeck J., Yang Z. Therapeutic potential of PI3K/AKT/mTOR pathway in gastrointestinal stromal tumors: rationale and progress. Cancers (Basel) 2020;12(10):2972. DOI: 10.3390/cancers12102972

150. Sathe A., Nawroth R. Targeting the PI3K/AKT/mTOR pathway in bladder cancer. Methods Mol Biol 2018;1655:335–50. DOI: 10.1007/978-1-4939-7234-0_23

151. Iyer G., Al-Ahmadie H., Schultz N. et al. Prevalence and cooccurrence of actionable genomic alterations in high-grade bladder cancer. J Clin Oncol 2013;31(25):3133–40. DOI: 10.1200/JCO.2012.46.5740

152. Platt F.M., Hurst C.D., Taylor C.F. et al. Spectrum of phosphatidylinositol 3-kinase pathway gene alterations in bladder cancer. Clin Cancer Res 2009;15(19):6008–17. DOI: 10.1158/1078-0432.CCR-09-0898

153. Calderaro J., Rebouissou S., de Koning L. et al. PI3K/AKT pathway activation in bladder carcinogenesis. Int J Cancer 2014;134(8):1776–84. DOI: 10.1002/ijc.28518

154. Cappellen D., Gil Diez de Medina S., Chopin D. et al. Frequent loss of heterozygosity on chromosome 10q in muscle-invasive transitional cell carcinomas of the bladder. Oncogene 1997;14(25):3059–66. DOI: 10.1038/sj.onc.1201154

155. Aveyard J.S., Skilleter A., Habuchi T., Knowles M.A. Somatic mutation of PTEN in bladder carcinoma. Br J Cancer 1999;80(5–6):904–8. DOI: 10.1038/sj.bjc.6690439

156. Tsuruta H., Kishimoto H., Sasaki T. et al. Hyperplasia and carcinomas in Pten-deficient mice and reduced PTEN protein in human bladder cancer patients. Cancer Res 2006;66(17):8389–96. DOI: 10.1158/0008-5472.CAN-05-4627

157. Knowles M.A., Habuchi T., Kennedy W., Cuthbert-Heavens D. Mutation spectrum of the 9q34 tuberous sclerosis gene TSC1 in transitional cell carcinoma of the bladder. Cancer Res 2003;63(22):7652–6.

158. Milowsky M.I., Iyer G., Regazzi A.M. et al. Phase II study of everolimus in metastatic urothelial cancer. BJU Int 2013;112(4):462–70. DOI: 10.1111/j.1464-410X.2012.11720.x

159. Bellmunt J., Lalani A.A., Jacobus S. et al. Everolimus and pazopanib (E/P) benefit genomically selected patients with metastatic urothelial carcinoma. Br J Cancer 2018;119(6):707–12. DOI: 10.1038/s41416-018-0261-0

160. Wagle N., Grabiner B.C., van Allen E.M. et al. Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov 2014;4(5):546–53. DOI: 10.1158/2159-8290.CD-13-0353

161. Kim J.W., Milowsky M.I., Hahn N.M. et al. Sapanisertib, a dual mTORC1/2 inhibitor, for TSC1- or TSC2-mutated metastatic urothelial carcinoma (mUC). J Clin Oncol 2021;39(6):431.

162. McPherson V., Reardon B., Bhayankara A. et al. A phase 2 trial of buparlisib in patients with platinum-resistant metastatic urothelial carcinoma. Cancer 2020;126(20):4532–44. DOI: 10.1002/cncr.33071

163. Flaherty K.T., Gray R.J., Chen A.P. et al. NCI-MATCH team. Molecular landscape and actionable alterations in a genomically guided cancer clinical trial: national cancer institute molecular analysis for therapy choice (NCI-MATCH). J Clin Oncol 2020;38(33):3883–94. DOI: 10.1200/JCO.19.03010

164. Sathe A., Guerth F., Cronauer M.V. et al. Mutant PIK3CA controls DUSP1-dependent ERK 1/2 activity to confer response to AKT target therapy. Br J Cancer 2014;111(11):2103–13. DOI: 10.1038/bjc.2014.534

165. Dickstein R.J., Nitti G., Dinney C.P. et al. Autophagy limits the cytotoxic effects of the AKT inhibitor AZ7328 in human bladder cancer cells. Cancer Biol Ther 2012;13(13):1325–38. DOI: 10.4161/cbt.21793

166. Seront E., Rottey S., Filleul B. et al. Phase II study of dual phosphoinositol-3-kinase (PI3K) and mammalian target of rapamycin (mTOR) inhibitor BEZ235 in patients with locally advanced or metastatic transitional cell carcinoma. BJU Int 2016;118(3):408–15. DOI: 10.1111/bju.13415

167. Munster P., Aggarwal R., Hong D. et al. First-in-human phase I study of GSK2126458, an oral pan-class I phosphatidylinositol-3-kinase inhibitor, in patients with advanced solid tumor malignancies. Clin Cancer Res 2016;22(8):1932–9. DOI: 10.1158/1078-0432.CCR-15-1665

168. Apolo A.B., Nadal R., Tomita Y. et al. Cabozantinib in patients with platinum-refractory metastatic urothelial carcinoma: an openlabel, single-centre, phase 2 trial. Lancet Oncol 2020;21(8):1099–109. DOI: 10.1016/S1470-2045(20)30202-3

169. Apolo A.B., Nadal R., Girardi D.M. et al. Phase I study of cabozantinib and nivolumab alone or with ipilimumab for advanced or metastatic urothelial carcinoma and other genitourinary tumors. J Clin Oncol 2020;38(31):3672–84. DOI: 10.1200/JCO.20.01652


Рецензия

Для цитирования:


Гривцова Л.Ю., Карякин О.Б., Сядрин М.Г., Самборский С.М., Иванов С.А., Каприн А.Д. Биомаркеры, определяющие лечебную тактику при метастатическом уротелиальном раке. Онкоурология. 2023;19(2):111-126. https://doi.org/10.17650/1726-9776-2023-19-2-111-126

For citation:


Grivtsova L.Yu., Karyakin O.B., Syadrin M.G., Samborsky S.M., Ivanov S.A., Kaprin A.D. Biomarkers determining treatment tactics in metastatic urothelial cancer. Cancer Urology. 2023;19(2):111-126. (In Russ.) https://doi.org/10.17650/1726-9776-2023-19-2-111-126

Просмотров: 1261


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X