Preview

Онкоурология

Расширенный поиск

Современные достижения в иммунотерапии рака почки

https://doi.org/10.17650/1726-9776-2019-15-4-30-38

Полный текст:

Аннотация

В России среди опухолей мочеполовой системы почечно-клеточный рак занимает 2-е место после злокачественных новообразований предстательной железы. У 25% пациентов на момент установления диагноза обнаруживаются метастазы. Лечение на поздних стадиях почечно-клеточного рака часто является недостаточно эффективным.  Внедрение в клиническую практику современных иммунотерапевтических препаратов, основанных на ингибировании иммунных контрольных точек, изменило прогноз заболевания для многих пациентов с различными злокачественными новообразованиями, в том числе с раком почки. В этой статье мы описали результаты последних клинических испытаний по применению иммунотерапии в лечении рака почки. Наиболее эффективно сочетание препаратов, ингибирующих разные контрольные точки, и комбинации ингибитора контрольной точки с таргетным препаратом. Такой подход, видимо, будет магистральным в терапии почечно-клеточного рака в ближайшей перспективе. Рассмотрены комбинации ингибиторов контрольных точек с лучевой терапией и иммуномодулирующими препаратами, а также роль микроРНК в регуляции экспрессии иммунных контрольных точек, значение и характеристики микробиома в связи с успешностью иммунотерапии рака почки, профили экспрессии генов в качестве биомаркеров иммунного ответа и другие биомаркеры. Лучшее понимание механизмов, ограничивающих эффективность ингибиторов иммунных контрольных точек, позволит улучшить будущее лечение.

Об авторах

А. А. Коротаева
ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова»
Россия

Коротаева Александра Алексеевна,  старший научный сотрудник, кандидат медицинский наук

115522 Москва, ул. Москворечье, 1



Н. В. Апанович
ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова»
Россия

Апанович Наталья Владимировна, старший научный сотрудник, кандидат медицинский наук

115522 Москва, ул. Москворечье, 1



Э. А. Брага
ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова»; ФГБНУ «Научно-исследовательский институт общей патологии и патофизиологии»
Россия

Брага  Элеонора  Александровна, доктор биологических наук, профессор, ведущий научный сотрудник

115522 Москва, ул. Москворечье, 1, 

125315 Москва, ул. Балтийская, 8




В. Б. Матвеев
ФГБУ «Национальный медицинский исследовательский центр онкологии им. Н.Н. Блохина» Минздрава России; ФГБОУ ВО «Московский государственный университета им. М.В. Ломоносова»
Россия

Матвеев  Всеволод  Борисович, доктор медицинских наук, профессор, член-корреспондент РАН, заведующий урологическим отделением, заместитель директора по научной работе

Факультет фундаментальной медицины ФГБОУ ВО «Московский государственный университета им. М.В. Ломоносова»

115478 Москва, Каширское шоссе, 24, 

119192 Москва, Ломоносовский проспект, 31, корп. 5



А. В. Карпухин
ФГБНУ «Медико-генетический научный центр им. акад. Н.П. Бочкова»
Россия

Карпухин  Александр  Васильевич, доктор биологических наук, профессор, заведующий лабораторией

115522 Москва, ул. Москворечье, 1



Список литературы

1. Ahmed Y., Osman N., Sheikh R. et al. A new era and advances in renal cell carcinoma. Cancer Ther Oncol Int J 2017;6(4):555692. DOI: 10.19080/CTOIJ.2017.06.555692.

2. Moch H., Cubilla A.L., Humphrey P.A. et al. The 2016 WHO classification of tumours of the urinary system and male genital organs-part a: renal, penile, and testicular tumours. Eur Urol 2016;70(1):93–105. DOI: 10.1016/j.eururo.2016.02.029.

3. Пушкарь Д.Ю., Раснер П.И., Куприянов Ю.А. и др. Опухоли почек. Русский медицинский журнал 2014;(17):2.

4. Матвеев В.Б., Волкова М.И. Последовательная таргетная терапия при диссеминированном раке почки. Онкоурология 2013;9(1):28–33.

5. Кушлинский Н.Е., Фридман М.В., Морозов А.А. и др. Современные подходы к иммунотерапии рака почки. Онкоурология 2018;14(2):54–67. DOI: 10.17650/1726-9776-2018-14-2-54-67.

6. Santoni M., Massari F., Di Nunno V. et al. Immunotherapy in renal cell carcinoma: latest evidence and clinical implications. Drugs in Context 2018;7:212528. DOI: 10.7573/dic.212528.

7. Seidel J.A., Otsuka A., Kabashima K. Anti-PD-1 and anti-CTLA-4 therapies in cancer: mechanisms of action, efficacy, and limitations. Front Oncol 2018;8:86. DOI: 10.3389/fonc.2018.00086.

8. Xiao X., Lao X.M., Chen M.M. et al. PD-1hi identifies a novel regulatory b-cell population in human hepatoma that promotes disease progression. Cancer Discov 2016;6(5):546–59. DOI: 10.1158/2159- 8290.CD-15-1408.

9. Larkin J., Chiarion-Sileni V., Gonzalez R. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N Engl J Med 2015;373(1):23–34. DOI: 10.1056/NEJMoa1504030.

10. Zaretsky J.M., Garcia-Diaz A., Shin D.S. et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med 2016;375(9):819–29. DOI: 10.1056/NEJMoa1604958.

11. Gao J., Ward J.F., Pettaway C.A. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat Med 2017;23(5):551–5. DOI: 10.1038/nm.4308.

12. Koyama S., Akbay E.A., Li Y.Y. et al. Adaptive resistance to therapeutic PD-1 blockade is associated with upregulation of alternative immune checkpoints. Nat Commun 2016;7:10501. DOI: 10.1038/ncomms10501.

13. Arlauckas S.P., Garris C.S., Kohler R.H. et al. In vivo imaging reveals a tumorassociated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 2017;9(389). DOI: 10.1126/scitranslmed.aal3604.

14. Lai Y., Zeng T., Liang X. et al. Cell death-related molecules and biomarkers for renal cell carcinoma targeted therapy. Cancer Cell Int 2019;19:221. DOI: 10.1186/s12935-019-0939-2.

15. Motzer R.J., Tannir N.M., McDermott D.F. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N Engl J Med 2018;378:1277–90. DOI: 10.1056/NEJMoa1712126.

16. Cella D., Grünwald V., Escudier B. et al. Patient-reported outcomes of patients with advanced renal cell carcinoma treated with nivolumab plus ipilimumab versus sunitinib (CheckMate 214): a randomised, phase 3 trial. Lancet Oncol 2019;20(2):297–310. DOI: 10.1016/S1470-2045(18)30778-2.

17. Rini B.I., Plimack E.R., Stus V. et al. Pembrolizumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1116–27. DOI: 10.1056/NEJMoa1816714.

18. Motzer R.J., Penkov K., Haanen J. et al. Avelumab plus axitinib versus sunitinib for advanced renal-cell carcinoma. N Engl J Med 2019;380(12):1103–15. DOI: 10.1056/NEJMoa1816047.

19. Rini B.I., Powles T., Atkins M.B. et al. Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion 151): a multicentre, open-label, phase 3, randomised controlled trial. Lancet 2019;393(10189):2404–15. DOI: 10.1016/S0140-6736(19)30723-8.

20. Park S.S., Dong H., Liu X. et al. PD-1 restrains radiotherapy-induced Abscopal effect. Cancer Immunol Res 2015;3(6):610–9. DOI: 10.1158/2326-6066.CIR-14-0138.

21. Kruger S., Ilmer M., Kobold S. et al. Advances in cancer immunotherapy 2019. J Exp Clin Cancer Res 2019;38(1):268. DOI: 10.1186/s13046-019-1266-0.

22. Phase II Trial of Stereotactic Body Radiation Therapy in Combination With Nivolumab Plus Ipilimumab in Patients With Metastatic Renal Cell Cancer. ClinicalTrials.gov Identifier: NCT03065179. Available at: https://clinicaltrials.gov/ct2/show/NCT03065179.

23. Chevrier S., Levine J., Zanotelli V.R.T. et al. An immune atlas of clear cell renal cell carcinoma. Cell 2017;169(4):736–49. e18. DOI: 10.1016/j.cell.2017.04.016.

24. Chen L., Zhu D., Feng J. et al. Overexpression of HHLA2 in human clear cell renal cell carcinoma is significantly associated with poor survival of the patients. Cancer Cell Int 2019;19:101. DOI: 10.1186/s12935-019-0813-2.

25. MEHTA, Vimal D., RASTELLI, Luca, SAPRA, Aparna Katoch. A novel approach for treatment of cancer using immunomodulation. Patent WO 2017/011831 Al.

26. Goldsberry W.N., Londoño A., Randall T.D. et al. Review of the role of Wnt in cancer immunomodulation. Cancers 2019;11(6):771. DOI: 10.3390/cancers11060771.

27. Shrimali R.K., Ahmad S., Verma V. et al. Concurrent PD-1 blockade negates the effects of OX40 agonist antibody in combination immunotherapy through inducing T-cell apoptosis. Cancer Immunol Res 2017;5(9):755–66. DOI: 10.1158/2326-6066.

28. Tauriello D.V.F., Palomo-Ponce S., Stork D. et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018;554(7693):538–43. DOI: 10.1038/nature25492.

29. Grenda A., Nicoś M., Szczyrek M. et al. MicroRNAs aid the assessment of programmed death ligand 1 expression in patients with non-small cell lung cancer. Oncol Lett 2019;17(6):5193–200. DOI: 10.3892/ol.2019.10207.

30. Zhang Q., Di W., Dong Y. et al. High serum miR-183 level is associated with poor responsiveness of renal cancer to natural killer cells. Tumour Biol 2015;36(12):9245–9. DOI: 10.1007/s13277-015-3604-y.

31. Wang Q., Lin W., Tang X. et al. The roles of microRNAs in regulating the expression of PD-1/PD-L1 immune checkpoint. Int J Mol Sci 2017;18(12). DOI: 10.3390/ijms18122540.

32. Fabrizio D.A., George T.J. Jr, Dunne R.F. et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol 2018;9(4):610–7. DOI: 10.21037/jgo.2018.05.06.

33. Endris V., Buchhalter I., Allgauer M. et al. Measurement of tumor mutational burden (TMB) in routine molecular diagnostics: in silico and real-life analysis of three larger gene panels. Int J Cancer 2019;144(9):2303–12. DOI: 10.1002/ijc.32002.

34. Chan T.A., Yarchoan M., Jaffee E. et al. Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 2018;30(1):44–56. DOI: 10.1093/annonc/mdy495.

35. Salem M.E., Puccini A., Grothey A. et al. 1835PDComparative molecular analysis between microsatellite instability-high (MSI-H) tumors with high tumor mutational burden (TMB-H) versus MSI-H tumors with TMB-intermediate/low. Ann Oncol 2018;29. DOI: 10.1093/annonc/mdy303.005.

36. Fabrizio D.A., George T., Dunne R. et al. Beyond microsatellite testing: assessment of tumor mutational burden identifies subsets of colorectal cancer who may respond to immune checkpoint inhibition. J Gastrointest Oncol 2018;9(4):610–7. DOI: 10.21037/jgo.2018.05.06.

37. McDermott D.F., Huseni M.A., Atkins M.B. et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 2018;24(6):749–57. DOI: 10.1038/s41591-018-0053-3.

38. Rini B.I. Molecular correlates differentiate response to atezolizumab + bevacizumab vs sunitinib. ESMO 2018 Congress. Abstract LBA31.

39. Kruger S., Legenstein M.L., Rosgen V. et al. Serum levels of soluble programmed death protein 1 (sPD-1) and soluble programmed death ligand 1 (sPD-L1) in advanced pancreatic cancer. Oncoimmunology 2017;6(5):e1310358. DOI: 10.1080/2162402X.2017.1310358.

40. Costantini A., Julie C., Dumenil C. et al. Predictive role of plasmatic biomarkers in advanced non-small cell lung cancer treated by nivolumab. Oncoimmunology 2018;7(8):e1452581. DOI 10.1080/2162402X.2018.1452581.

41. Gandara D.R., Paul S.M., Kowanetz M. et al. Blood-based tumor mutational burden as a predictor of clinical benefit in non-small-cell lung cancer patients treated with atezolizumab. Nat Med 2018;24(9):1441–8. DOI: 10.1038/s41591-018-0134-3.

42. Kim E.S., Velcheti V., Mekhail T. et al. LBA55Primary efficacy results from BF1RST, a prospective phase II trial evaluating blood-based tumour mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC). Ann Oncol 2018;29(suppl_8):mdy424.067.

43. Lee J.H., Long G.V., Boyd S. et al. Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol 2017;28(5):1130–6. DOI: 10.1093/annonc/mdx026.

44. Goldberg S.B., Narayan A., Kole A.J. et al. Early assessment of lung cancer immunotherapy response via circulating tumor DNA. Clin Cancer Res 2018;24(8):1872–80. DOI: 10.1158/1078-0432.CCR-17-1341.

45. Xing T., He H. Epigenomics of clear cell renal cell carcinoma: mechanisms and potential use in molecular pathology. Clin J Cancer Res 2016;28(1):80–91. DOI: 10.3978/j.issn.1000-9604.2016.02.09.

46. Blake S.J., Dougall W.C., Miles J.J. et al. Molecular pathways: targeting CD96 and TIGIT for cancer immunotherapy. Clin Cancer Res 2016;22(21):5183–8. DOI: 10.1158/1078-0432.CCR-16-0933.

47. Glen M.C., Tsuyoshi F., Gabriela M.W. et al. TIGIT marks exhausted T cells, correlates with disease progression, and serves as a target for immune restoration in HIV and SIV infection. PLoS Pathog 2016;12(1). DOI: 10.1371/journal.ppat.1005349.

48. Sharma P., Hu-Lieskovan S., Wargo J.A. et al. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 2017;168(4). DOI: 10.1016/j.cell.2017.01.017.

49. Arlauckas S.P., Garris C.S., Kohler R.H. et al. In vivo imaging reveals a tumor-associated macrophage-mediated resistance pathway in anti-PD-1 therapy. Sci Transl Med 2017;9(389). DOI: 10.1126/scitranslmed.aal3604.

50. Antonios J.P., Soto H., Everson R.G. et al. Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma. Neuro Oncol 2017;19(6):796–807. DOI: 10.1093/neuonc/now287.

51. Chamoto K., Chowdhury P.S., Kumar A. et al. Mitochondrial activation chemicals synergize with surface receptor PD-1 blockade for T cell-dependent antitumor activity. Proc Natl Acad Sci USA 2017;114(5):E761–70. DOI: 10.1073/pnas.1620433114.

52. Sorensen M.R., Holst P.J., Steffensen M.A. et al. Adenoviral vaccination combined with CD40 stimulation and CTLA-4 blockage can lead to complete tumor regression in a murine melanoma model. Vaccine 2010;28(41):6757–64. DOI: 10.1016/j.vaccine.2010.07.066.

53. Ribas A., Dummer R., Puzanov I. et al. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017;170(6):1109–19.e10. DOI: 10.1016/j.cell.2017.08.027.

54. Sivan A., Corrales L., Hubert N. et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PDL1 efficacy. Science 2015;350(6264): 1084–9. DOI: 10.1126/science.aac4255.

55. Vétizou M., Pitt J.M., Daillère R. et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 2015;350(6264):1079–84. DOI: 10.1126/science.aad1329.

56. Gopalakrishnan V., Spencer C.N., Nezi L. et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 2018;359(6371): 97–103. DOI: 10.1126/science.aan4236.

57. Routy B., Le Chatelier E., Derosa L. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 2018;359:91–7. DOI: 10.1126/science.aan3706.

58. Derosa L., Iebba V., Albiges L. et al. Gut microbiome composition to predict resistance in renal cell carcinoma (RCC) patients on nivolumab. J Clin Oncol 2018;36(15_suppl):4519. DOI: 10.1200/JCO.2018.36.15_suppl.4519.


Для цитирования:


Коротаева А.А., Апанович Н.В., Брага Э.А., Матвеев В.Б., Карпухин А.В. Современные достижения в иммунотерапии рака почки. Онкоурология. 2019;15(4):30-38. https://doi.org/10.17650/1726-9776-2019-15-4-30-38

For citation:


Korotaeva A.A., Apanovich N.V., Braga E.A., Matveev V.B., Karpukhin A.V. Current advances in kidney cancer immunotherapy. Cancer Urology. 2019;15(4):30-38. (In Russ.) https://doi.org/10.17650/1726-9776-2019-15-4-30-38

Просмотров: 168


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X