Preview

Онкоурология

Расширенный поиск

Генетические маркеры предрасположенности к возникновению рака предстательной железы

https://doi.org/10.17650/1726-9776-2015-11-3-16-23

Полный текст:

Аннотация

Рак предстательной железы (РПЖ), как и большинство онкологических патологий, относится к мультифакториальным заболеваниям, возникающим в результате взаимодействия средовых факторов и индивидуальных особенностей генотипа. Статья посвящена обзору литературы по наследственной предрасположенности к РПЖ, обусловленной как редко встречающимися мутациями генов с высокой пенетрантностью, так и наследуемыми полиморфными вариантами генов с низкой пенетрантностью. Рассмотрены клинические аспекты наличия наследственной предрасположенности к РПЖ, в частности необходимость скрининга мужчин на предмет наличия у них обоих типов наследственных нарушений для оценки риска развития данной онкопатологии.

Об авторах

М. Д. Канаева
ФГБУ «Российский научный центр радиологии и хирургических технологий» Минздрава России; Россия, 197758, Санкт-Петербург, пос. Песочный, ул. Ленинградская, 70
Россия


И. Е. Воробцова
ФГБУ «Российский научный центр радиологии и хирургических технологий» Минздрава России; Россия, 197758, Санкт-Петербург, пос. Песочный, ул. Ленинградская, 70
Россия


Список литературы

1. Алексеев Б.Я. Гормональная терапия в комбинированном лечении рака предстательной железы. Вместе против рака 2004;(3):35–8. [Alexeyev B.Ya. Hormone Therapy in Combined Treatment of Prostate Cancer. Together Against Cancer (Vmeste Protiv Raka) 2004;(3):35–8. (In Russ.)].

2. Johns L.E., Houlston R.S. A systematic review and meta-analysis of familial prostate cancer risk. BJU 2003(91):789–94.

3. Page W.F., Braun M.M., Partin A.W. et al. Heredity and prostate cancer: a study of World War II veteran twins. Prostate 1997; 33:240–5.

4. Ahlbom A., Lichtenstein P., Malmstroem H. et al. Cancer in twins: genetic and nongenetic familial risk factors. J Natl Cancer Inst 1997;89:287–93.

5. Lichtenstein P., Holm N.V., Verkasalo P.K. et al. Environmental and heritable factors in the causation of cancer—analyses of cohorts of twins from Sweden, Denmark, and Finland. N Engl J Med 2000;343:78–85.

6. Groenberg H., Damber L., Damber J.E. et al. Segregation analysis of prostate cancer in Sweden: support for dominant inheritance. Am J Epidemiol 1997;146:552–7.

7. MacInnis R.J., Antoniou A.C., Eeles R.A. et al. Prostate cancer segregation analyses using 4390 families from UK and Australian population-based studies. Genet Epidemiol 2010;34:42–50.

8. Smith J.R., Freije D., Carpten J.D. et al. Major susceptibility locus for prostate cancer on chromosome 1 suggested by a genomewide search. Science 1996:274:1371–4.

9. Carpten J., Nupponen N., Isaacs S. Germline mutations in the ribonuclease L gene in families showing linkage with HPC1. Nature Genet 2002;30:181–4.

10. Xu J., Zheng S.L., Hawkins G.A. et al. Linkage and association studies of prostate cancer susceptibility: evidence for linkage at 8p22–23. Am J Hum Genet 2001;69:341–50.

11. Tavtigian S.V., Simard J., Teng H.F. et al. A strong candidate prostate cancer susceptibility gene at chromosome 17p. Nat Genet 2001;27:172–80.

12. Berthon P., Valeri A., Cohen-Akenine A. et al. Predisposing gene for early-onset prostate cancer, localized on chromosome 1q42.2–43. Am J Hum Genet 1998;62:1416–24.

13. Xu J., Meyers D., Freije D. et al. Evidence for a prostate cancer susceptibility locus on the X chromosome. Nat Genet 1998;20:175–9.

14. Gibbs M., Stanford J.L., McIndoe R.A. et al. Evidence for a rare prostate cancersusceptibility locus at chromosome 1p36. Am J Hum Genet 1999;64:776–87.

15. Berry R., Schroeder J.J., French A.J. et al. Evidence for a prostate cancer-susceptibility locus on chromosome 20. Am J Hum 2000;67:82–91.

16. Norris J. D., Chang C.-Y., Wittmann B. M. et al. The homeodomain protein HOXB13 regulates the cellular response to androgens. Molec Cell 2009;36:405–16.

17. Ewing C., Ray A., Lange E. et al. Germline mutations in HOXB13 and prostate-cancer risk. N Engl J Med 2012;366(2):141–9.

18. Xu J., Lange E., Lu L. et al. HOXB13 is a susceptibility gene for prostate cancer: results from the International Consortium for Prostate Cancer Genetics (ICPCG). Hum Genet 2013;132:5–14.

19. MacInnis R., Severi G., Baglietto L. et al. Population-Based Estimate of Prostate Cancer Risk for Carriers of the HOXB13 Missense Mutation G84E. PLOS ONE 2013;8(2):e54727.

20. Chen Z., Greenwood C., Isaacs W.B. et al. The G84E mutation of HOXB13 is associated with increased risk for prostate cancer:results from the REDUCE trial. Carcinogenesis 2013;34:(6):1260–4.

21. Thorsteinsdottir U., Kroon E., Jerome L. et al. Defining roles for HOX and MEIS1 genes in induction of acute myeloid leukemia. Molec Cell Biol 2001;21:224–34.

22. Mitra A., Jameson C., Barbachano Y. et al. Over-expression of RAD51 occurs in ggressive prostate cancer. Histopathology 2009:55(6):696–704.

23. Casey G. The BRCA1 and BRCA2 breast cancer genes. Curr Opin Oncol 1997;9(1)88– 93.

24. Kote-Jarai Z., Leongamornlert D., Saunders E. et al. BRCA2 is a moderate penetrance gene contributing to young-onset prostate cancer: Implications for genetic testing in prostate cancer patients. Br J Cancer 2011;105:1230–4.

25. Leongamornlert D., Mahmud N., Tymrakiewicz M. et al. Germline BRCA1 mutations increase prostate cancer risk. Br J Cancer 2012;106:1697–701.

26. Castro E., Goh C., Olmos D. et al. Germline BRCA mutations are associated with higher risk of nodal involvement, distant metastasis, and poor survival outcomes in prostate cancer. J Clin Oncol 2013;31(14):1748–56.

27. Gallagher D., Gaudet M., Pal P. et al. Germline BRCA mutations denote a clinicopathologic subset of prostate cancer. Clin Cancer Res 2010;16(7):2115–21.

28. Hale V., Weischer M., Park J. CHEK2 1100delC mutation and risk of prostate cancer. Prostate Cancer 2014.

29. Johnson N., Fletcher O., Naceur- Lombardelli C. et al. Interaction between CHEK2*1100delC and other low-penetrance breast-cancer susceptibility genes: a familial study. Lancet 2005;366:1554–7.

30. Casey G., Neville P. J., Plummer S. J. RNASEL arg462gln variant is implicated in up to 13% of prostate cancer cases. Nature Genet 2002;32:581–3.

31. Fesinmeyer M., Kwon E., Fu R. et al. Genetic variation in RNASEL and risk for prostate cancer in a population-based casecontrol study. Prostate 2011;71(14):1538–47.

32. Meyer S., Penney K., Stark J. et al. Genetic variation in RNASEL associated with prostate cancer risk and progression. Carcinogenesis 2010;31(9):1597–603.

33. Schoenfeld J., Margalit D., Kasperzyk J. et al. A single nucleotide polymorphism in inflammatory gene RNASEL predicts outcome after radiation therapy for localized prostate cancer. Clin Cancer Res 2013;19(6):1612–9.

34. Rebbeck T. R., Walker A. H., Zeigler-Johnson C. et al. Association of HPC2/ELAC2 genotypes and prostate cancer. Am J Hum Genet 2000;67:1014–9.

35. Xu B., Tong N., Li J. et al. ELAC2 polymorphisms and prostate cancer risk: a meta-analysis based on 18 case–control studies. Prostate Cancer Prostatic Dis 2010;13(3):270–7.

36. Thiery J.P. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002;2(6):442–54.

37. Cattaneo F., Venesio T., Molatore S. Functional analysis and case-control study of -160C/A polymorphism in the E-cadherin gene promoter: association with cancer risk. Anticancer Research 2006;26: 4627–32.

38. Li G., Pan T., Guo D., Li L.C. Regulatory variants and disease: the e-cadherin −160C/A SNP as an example. Mol Biol Int 2014; 2014:967565.

39. Wang L., Wang G., Lu C. et al. Contribution of the -160C/A polymorphism in the E-cadherin promoter to cancer risk: a meta-analysis of 47 case-control studies. PLoS One 2012;7(7): article ID e40219.

40. Ingles S., Ross R., Yu M. et al. Association of prostate cancer risk with genetic polymorphisms in vitamin D receptor and androgen receptor . J Nat Canc Inst 1997;89(2):166–70.

41. Ross R., Pike M., Coetzee G. et al. Androgen metabolism and prostate cancer: establishing a model of genetic susceptibility. Canc Res1998;58:4497–504.

42. Coetzee G.A., Ross R.K. Prostate cancer and the androgen receptor [letter]. J Natl Cancer Inst 1994;86:872–3.

43. Giovannucci E., Slampfer M. J., Krithivas K. et al. The CAG repeat within the androgen receptor gene and its relationship to prostate cancer. Proc Natl Acad Sci USA 1997;94: 3320–3.

44. Hardy D., Scher H., Bogenreider T. et al. Androgen receptor CAG repeal lengths in proslale cancer:correlation with age of onset. J Clin Endocrinol 1996;9:4400–5.

45. Godoy A.S., Chung I., Montecinos V.P. et al. Role of androgen and vitamin D receptors in endothelial cells from benign and malignant human prostate. Am J Physiol Endocrinol Metab 2013;304(11):1131–9.

46. Shui I.M., Mucci L.A., Kraft P. et al. Vitamin d-related genetic variation, plasma vitamin D, and risk of lethal prostate cancer: a prospective nested case-control study. J Natl Cancer Inst 2012;104(9):690–9.

47. Xu Y., He B., Pan Y., et al. Systematic review and meta-analysis on vitamin D receptor polymorphisms and cancer risk. Tumour Biol 2014;35(5):4153–69. Генетический паспорт — основа индивидуальной и предиктивной медицины. Под ред. В. С. Баранова. СПб.: Изд-во Н-Л, 2009. 528 с. [Genetical Data Sheet: Basis of Individual and Predictive Medicine. Under the editorship of Baranova V.S. St.Petersburg: N-L Publishing House, 2009. 528 p. (In Russ.)].

48. Gong M., Dong W., Shi Z. et al. Genetic polymorphisms of GSTM1, GSTT1, and GSTP1 with prostate cancer risk: a metaanalysis of 57 studies. PLoS One 2012;7(11):e50587.

49. Yang Q., Du J., Yao X. Significant association of glutathione S-transferase T1 null genotype with prostate cancer risk: a metaanalysis of 26,393 subjects. PLoS One 2013;8(1):e53700.

50. Wei B., Zhou Y., Xu Z. et al. GSTP1 Ile105Val polymorphism and prostate cancer risk: evidence from a meta-analysis. PLoS One 2013;8(8):e71640.

51. Yu Z., Li Z., Cai B. et al. Association between the GSTP1 Ile105Val polymorphism and prostate cancer risk: a systematic review nd meta-analysis. Tumour Biol 2013;34(3):1855–63.

52. Huang S., Wu F., Luo M. et al. The glutathione S-transferase P1 341C>T polymorphism and cancer risk: a meta-analysis of 28 case-control studies. PLoS One 2013;8(2):e56722.

53. Xu J., Sun J., Zheng S. Prostate cancer risk-associated genetic markers and their potential clinical utility. Asian J Androl 2013;15:314–22.


Для цитирования:


Канаева М.Д., Воробцова И.Е. Генетические маркеры предрасположенности к возникновению рака предстательной железы. Онкоурология. 2015;11(3):16-23. https://doi.org/10.17650/1726-9776-2015-11-3-16-23

For citation:


Kanaeva M.D., Orobtsova I.E. Genetic predisposition markers for prostate cancer. Cancer Urology. 2015;11(3):16-23. (In Russ.) https://doi.org/10.17650/1726-9776-2015-11-3-16-23

Просмотров: 550


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)