Сигнальный механизм рецептора андрогена при раке предстательной железы: резистентность к антиандрогенной терапии и связь с генами репарации повреждений ДНК
https://doi.org/10.17650/1726-9776-2023-19-1-85-101
Аннотация
Введение. Метастатический кастрационно-резистентный рак предстательной железы остается сложной проблемой ввиду предлеченности пациентов и ограниченного выбора методов последующей терапии. При первоначальной эффективности антиандрогенов 2-го поколения резистентность к ним не является исключительным событием. Описаны механизмы, зависящие от рецептора андрогена и не зависящие от него. При этом пристальное внимание уделено мутациям в генах репарации повреждений ДНК, в частности путем гомологичной рекомбинации (homologous recombination repair, HRR), как возможной причине соматических генетических нарушений именно при прогрессирующем метастатическом течении. Однако данные о влиянии дефекта HRR на эффективность антиандрогенной терапии РПЖ весьма ограниченны, что требует проведения дополнительных клинических исследований.
Цель исследования - оценка влияния клинико-морфологических и молекулярно-генетических факторов на эффективность антиандрогенной терапии энзалутамидом у больных раком предстательной железы с известным статусом мутаций генов репарации ДНК путем HRR и механизма репарации некомплементарных пар нуклеотидов.
Материалы и методы. Исследование выполнено на базе Клинического онкологического диспансера № 1 (Краснодар). Ретроспективно проанализированы клинико-морфологические параметры 54 больных раком предстательной железы, получивших антиандрогенную терапию энзалутамидом, с известным статусом герминальных и соматических мутаций генов репарации повреждений ДНК путем HRR (BRCA1, BRCA2, ATM, BARD, BRIP1, CDK12, CHEK1, CHEK2, PALB2, RAD51B, RAD51C, RAD54L, FANCL) и микросателлитной нестабильности при иммуногистохимическом определении дефицита репарации некомплементарных пар нуклеотидов. Статистический анализ выполнен с использованием пакета IBM SPSS Statistics v.22.
Результаты и заключение. У 17 из 54 пациентов выявлены патогенные герминальные и соматические мутации генов HRR: 7 мутаций в гене BRCA2, 4 - в CHEK2, 2 - в BRCA1, 2 - в CDK12, 1 - в BRIP1 и 1 - в ATM. Показано, что в группе больных метастатическим кастрационно-резистентным раком предстательной железы гистологическая градация по классификации Международного общества урологических патологов (ISUP) G2 (сумма баллов по шкале Глисона 7 (3 + 4)) статистически значимо связана с отсутствием мутации генов HRR, при этом градация G3 (сумма баллов по шкале Глисона 7 (4 + 3)) ассоциирована с наличием мутаций генов HRR (р <0,05). Рост уровня простатического специфического антигена (ПСА)/биохимическое прогрессирование в сроки 12-16 нед от начала терапии энзалутамидом был статистически значимо связан с метастатическим кастрационно-резистентным раком предстательной железы без мутаций генов HRR (р <0,05). В случае ответа опухоли на лечение энзалутамидом снижение уровня ПСА не зависело от возраста манифестации заболевания, степени дифференцировки, первичной распространенности, предшествующего назначения доцетаксела и наличия мутации генов HRR. В многофакторном регрессионном анализе Кокса назначение доцетаксела до энзалутамида повышало риск ПСА-прогрессирования (отношение рисков (ОР) 5,160; 95 % доверительный интервал (ДИ) 1,549-17,189; р = 0,008) и рентгенологического прогрессирования (ОР 5,161; 95 % ДИ 1,550-17,187; р = 0,008). Риск прогрессирования уменьшался при увеличении степени снижения уровня ПСА после 12-16 нед терапии энзалутамидом: при снижении уровня ПСА >30 % ОР 0,150; 95 % ДИ 0,040-0,570; р = 0,005; при снижении уровня ПСА >50 % ОР 0,039; 95 % ДИ 0,006-0,280; р = 0,001; при снижении уровня ПСА >90 % ОР 0,116; 95 % ДИ 0,036-0,375; р = 0,000. Наличие мутации генов HRR, возраст <58 лет, первично-метастатическое заболевание и низкодифференцированная морфология не влияли на время без ПСА-прогрессирования (p >0,05). При построении кривых Каплана-Майера имелась тенденция к увеличению времени до развития кастрационной резистентности в группе первичного раннего рака (Breslow р = 0,06; Tarone-Ware р = 0,062). При подгрупповом анализе в когорте больных метастатическим кастрационно-резистентным раком предстательной железы (n = 48) наличие мутации генов HRR у пациентов, предлеченных доцетакселом, было связано с уменьшением времени до ПСА-прогрессирования по сравнению с больными без мутации (log-rank р <0,05).
Ключевые слова
Об авторах
А. И. СтуканьРоссия
Стукань Анастасия Игоревна.
350040 Краснодар, ул. Димитрова, 146; 350063 Краснодар, ул. Митрофана Седина, 4
Конфликт интересов:
Нет
А. Ю. Горяинова
Россия
350040 Краснодар, ул. Димитрова, 146; 350063 Краснодар, ул. Митрофана Седина, 4
Конфликт интересов:
Нет
М. М. Григорян
Россия
350040 Краснодар, ул. Димитрова, 146
Конфликт интересов:
Нет
В. Ф. Кутян
Россия
350040 Краснодар, ул. Димитрова, 146
Конфликт интересов:
Нет
В. С. Жданов
Россия
350040 Краснодар, ул. Димитрова, 146
Конфликт интересов:
Нет
Т. Ю. Семиглазова
Россия
197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68; 191015 Санкт-Петербург, ул. Кирочная, 41
Конфликт интересов:
Нет
Е. Н. Имянитов
Россия
197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68; 191015 Санкт-Петербург, ул. Кирочная, 41; 194100 Санкт-Петербург, ул. Литовская, 2
Конфликт интересов:
Нет
Список литературы
1. Sung H., Ferlay J., Siegel R.L. et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin 2021;71(3):209—49. DOI: 10.3322/caac.21660
2. Sartor O., de Bono J.S. Metastatic prostate cancer. N Engl J Med 2018;378(17):1653-4. DOI: 10.1056/NEJMra1803343
3. Beer T.M., Armstrong A.J., Rathkopf D.E. et al. Enzalutamide in metastatic prostate cancer before chemotherapy. N Engl J Med 2014;371(5):424-33. DOI: 10.1056/NEJMoa1405095
4. Scher H.I., Fizazi K., Saad F. et al. Increased survival with enzalutamide in prostate cancer after chemotherapy. N Engl J Med 2012;367(13):1187-97. DOI: 10.1056/NEJMoa1207506
5. Conteduca V., Wetterskog D., Sharabiani M.T.A. et al. Androgen receptor gene status in plasma DNA associates with worse outcome on enzalutamide or abiraterone for castration-resistant prostate cancer: a multi-institution correlative biomarker study. Ann Oncol 2017;28(7):1508-16. DOI: 10.1093/annonc/mdx155
6. Antonarakis E.S., Lu C., Wang H. et al. AR-V7 and resistance to enzalutamide and abiraterone in prostate cancer. N Engl J Med 2014;371(11):1028-38. DOI: 10.1056/NEJMoa1315815
7. Armstrong A.J., Halabi S., Luo J. et al. Prospective multicenter validation of androgen receptor splice variant 7 and hormone therapy resistance in high-risk castration-resistant prostate cancer: the prophecy study. J Clin Oncol 2019;37(13):1120-9. DOI: 10.1200/JCO.18.01731
8. Liu C., Lou W., Zhu Y. et al. Intracrine androgens and AKR1C3 activation confer resistance to enzalutamide in prostate cancer. Cancer Res 2015;75(7):1413-22. DOI: 10.1158/0008-5472.CAN-14-3080
9. Crona D.J., Whang Y.E. Androgen receptor-dependent and -independent mechanisms involved in prostate cancer therapy resistance. Cancers 2017;9(6):67. DOI: 10.3390/cancers9060067
10. Guedes L.B., Morais C.L., Almutairi F. et al. Analytic valida of RNA in situ hybridization (RISH) for AR and AR-V7 exp ression in human prostate cancer. Clin Cancer Res 2016;22(18):4651-63. DOI: 10.1158/1078-0432.CCR-16-0205
11. Salma B.S., Varadha B.V., Hannelore V.H. et al. Novel insights in cell cycle dysregulation during prostate cancer progression. Endocr Relat Cancer 2021;28(6):R141-55. DOI: 10.1530/ERC-20-0517
12. Mcnair C., Urbanuccia A., Comstock C.E. et al. Cell cycle-coupled expansion of AR activity promotes cancer progression. Oncogene 2017;36(12):1655-68. DOI: 10.1038/onc.2016.334
13. Schiewer M.J., Augello M.A., Knudsen K.E. The AR dependent cell cycle: mechanisms and cancer relevance. Mol Cell Endocrinol 2012;352(1-2):34-45. DOI: 10.1016/j.mce.2011.06.033
14. Gordon V., Bhadel S., Wunderlich W. et al. CDK9 regulates AR promoter selectivity and cell growth through serine 81 phosphorylation. Mol Endocrinol 2010;24(12):2267-80. DOI: 10.1210/me.2010-0238
15. Chen S., Gulla S., Cai C., Balk S.P. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 2012;287(11):8571-83. DOI: 10.1074/jbc.m111.325290
16. Koryakina Y., Knudsen K.E., Gloeli D. Cell-cycle-dependent regulation of androgen receptor function. Endocr Relat Cancer 2015;22(2):249-64. DOI: 10.1530/ERC-14-0549
17. Cancer Genome Atlas Research Network. The molecular taxonomy of primary prostate. Cancer Cell 2015;163(4):1011-25. DOI: 10.1158/1538-7445.am2016-133
18. Ren S., Wei G.H., Liu D. et al. Wholegenome and transcriptome sequencing of prostate cancer identify new genetic alterations driving disease progression. Eur Urol 2018;73(3):322-39. DOI: 10.21236/ada613308
19. Fraser M., Sabelnykova V.Y., Yamaguchi T.N. et al. Genomic hallmarks of localized, non-indolent prostate cancer. Nature 2017;541(7637):359-64. DOI: 10.1016/j.juro.2017.09.039
20. Bangma C.H., Roobol M.J. Defining and predicting indolent and low risk prostate cancer. Crit Rev Oncol Hematol 2012;83(2):235-41. DOI: 10.1016/j.critrevonc.2011.10.003
21. Irshad S., Bansal M., Castillo-Martin M. et al. A molecular signature predictive of indolent prostate cancer. Sci Transl Med 2013;5(202):202ra122. DOI: 10.1126/scitranslmed.3006408
22. Kamoun A., Cancel-Tassin G., Fromont G. et al. Comprehensive molecular classification of localized prostate adenocarcinoma reveals a tumour subtype predictive of non-aggressive disease. Ann Oncol 2018;29(8):1814-21. DOI: 10.1093/annonc/mdy224
23. Bancroft E.K., Page E.C., Castro E. et al. Targeted prostate cancer screening in BRCA1 and BRCA2 mutation carriers: results from the initial screening round of the Impact study. Eur Urol 2014;66(3):489-99. DOI: 10.1126/scitranslmed.3006408
24. Zhang W., Van Gent D.C., Incrocci L. et al. Role of the DNA damage response in prostate cancer formation, progression and treatment. Prostate Cancer Prostatic Dis 2020;23(1):24-37. DOI: 10.1038/s41391-019-0153-2
25. Hussain M., Fizazi K., Saad F. et al. Enzalutamide in men with nonmetastatic, castration-resistant prostate cancer. N Engl J Med 2018;378(26):2465-74. DOI: 10.1056/NEJMoa1800536
26. Edwards J., Krishna N.S., Grigor K.M., Bartlett J.M.S. Androgen receptor gene amplification and protein expression in hormone refractory prostate cancer. Br J Cancer 2003;89(3):552-6. DOI: 10.1038/sj.bjc.6601127
27. Romanel A., Gasi Tandefelt D., Conteduca V. et al. Plasma AR and abiraterone-resistant prostate cancer. Sci Transl Med 2015;7(312):re10. DOI: 10.1126/scitranslmed.aac9511
28. Tucci M., Zichi C., Buttigliero C. et al. Enzalutamide-resistant castration-resistant prostate cancer: challenges and solutions. Onco Targets Ther 2018;11:7353-68. DOI: 10.2147/OTT.S153764
29. Teply B.A., Wang H., Luber B. et al. Bipolar androgen therapy in men with metastatic castration-resistant prostate cancer after progression on enzalutamide: an open-label, phase 2, multicohort study. Lancet Oncol 2018;19(1):76-86. DOI: 10.1016/S1470-2045(17)30906-3
30. Joseph J.D., Lu N., Qian J. et al. A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509. Cancer Discov 2013;3(9):1020-9. DOI: 10.1158/2159-8290.CD-13-0226
31. Balbas M.D., Evans M.J., Hosfield D.J. et al. Overcoming mutation-based resistance to antiandrogens with rational drug design. Elife 2013;2:e00499. DOI: 10.7554/elife.00499
32. Lallous N., Volik S.V., Awrey S. et al. Functional analysis of androgen receptor mutations that confer anti-androgen resistance identified in circulating cell-free DNA from prostate cancer patients. Genome Biol 2016;17(1):10. DOI: 10.1186/s13059-015-0864-1
33. Hu R., Dunn T.A., Wei S. et al. Ligand-independent androgen receptor variants derived from splicing of cryptic exons signify hormone-refractory prostate cancer. Cancer Res 2009;69(1):16-22. DOI: 10.1158/0008-5472.CAN-08-2764
34. Zhang X., Morrissey C., Sun S. et al. Androgen receptor variants occur frequently in castration resistant prostate cancer metastases. PLoS One 2011;6(11):e27970. DOI: 10.1371/journal.pone.0027970
35. Ware K.E., Garcia-Blanco M.A., Armstrong A.J., Dehm S.M. Biologic and clinical significance of androgen receptor variants in castration resistant prostate cancer. Endocr Relat Cancer 2014;21(4):T87-103. DOI: 10.1530/erc-13-0470
36. Hu R., Lu C., Mostaghel E.A. et al. Distinct transcriptional programs mediated by the ligand-dependent full-length androgen receptor and its splice variants in castration-resistant prostate cancer. Cancer Res 2012;72(14):3457-62. DOI: 10.1158/0008-5472.CAN-11-3892
37. Sq T., Kwan E., Fettke H. AR-V7 and AR-V9 expression is not predictive of response to AR-axis targeting agents in metastatic castration-resistant prostate cancer. Cancer Res 2018;78(13):2593. DOI: 10.1158/1538-7445.am2018-2593
38. Miller W.L., Auchus R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr Rev 2011;32(1):81-151. DOI: 10.1210/er.2010-0013
39. Cai C., Balk S.P. Intratumoral androgen biosynthesis in prostate cancer pathogenesis and response to therapy. Endocr Relat Cancer 2011;18(5):R175-82. DOI: 10.1530/ERC-10-0339
40. Galletti G., Leach B.I., Lam L., Tagawa S.T. Mechanisms of resistance to systemic therapy in metastatic castration-resistant prostate cancer. Cancer Treat Rev 2017;57:16-27. DOI: 10.1016/j.ctrv.2017.04.008
41. Stanbrough M., Bubley G.J., Ross K. et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006;66(5):2815-25. DOI: 10.1158/0008-5472.CAN-05-4000
42. Puhr M., Hoefer J., Eigentler A. et al. The glucocorticoid receptor is a key player for prostate cancer cell survival and a target for improved antiandrogen therapy. Clin Cancer Res 2018;24(4):927-38. DOI: 10.1158/1078-0432.ccr-17-0989
43. Arora V.K., Schenkein E., Murali R. et al. Glucocorticoid receptor confers resistance to antiandrogens by bypassing androgen receptor blockade. Cell 2013;155(6):1309-22. DOI: 10.1016/j.cell.2013.11.012
44. Venkitaraman R., Lorente D., Murthy V. et al. A randomised phase 2 trial of dexamethasone versus prednisolone in castration-resistant prostate cancer. Eur Urol 2015;67(4):673-9. DOI: 10.1016/j.eururo.2014.10.004
45. Akamatsu S., Inoue T., Ogawa O., Gleave M.E. Clinical and mo-lecular features of treatment-related neuroendocrine prostate cancer. Int J Urol 2018;25(4):345-51. DOI: 10.1111/iju.13526
46. Flechon A., Pouessel D., Ferlay C. et al. Phase II study of carboplatin and etoposide in patients with anaplastic progressive metastatic castration-resistant prostate cancer (mCRPC) with or without neuroendocrine differentiation: results of the French Genito-Urinary Tumor Group (GETUG) P01 trial. Ann Oncol 2011;22(11):2476-81. DOI: 10.1093/annonc/mdr004
47. Culine S., El Demery M., Lamy P.J. et al. Docetaxel and cisplatin in patients with metastatic androgen independent prostate cancer and circulating neuroendocrine markers. J Urol 2007;178(3 Pt 1): 844-8. DOI: 10.1016/j.juro.2007.05.044
48. McKay R.R., Kwak L., Crowdis J.P. Phase II multicenter study of enzalutamide in metastatic castration-resistant prostate cancer to identify mechanisms driving resistance. Clin Cancer Res 2021;27(13):3610-9. DOI: 10.1158/1078-0432.CCR-20-4616
49. Hanahan D., Weinberg R.A. Hallmarks of cancer: the next generation. Cell 2011;144(5):646-74. DOI: 10.1016/j.cell.2011.02.013
50. Ceccaldi R., Rondinelli B., D'Andrea A.D. Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 2015;26(1):52-64. DOI: 10.1016/j.tcb.2015.07.009
51. Bhattacharjee S., Nandi S. Choices have consequences: The nexus between DNA repair pathways and genomic instability in cancer. Clin Transl 2016;5(1):45. DOI: 10.1186/s40169-016-0128-z
52. Hustedt N., Durocher D. The control of DNA repair by the cell cycle. Nat Cell Biol 2016;19(1):1-9. DOI: 10.1038/ncb3452
53. Jeggo P.A., Pearl L.H., Carr A.M. DNA repair, genome stability and cancer: a historical perspective. Nat Rev Cancer 2016;16(1):35-42. DOI: 10.1038/nrc.2015.4
54. Roos W.P., Thomas A.D., Kaina B. DNA damage and the balance between survival and death in cancer biology. Nat Rev Cancer 2016;16(1):20-33. DOI: 10.1038/nrc.2015.2
55. Schiewer M.J., Knudsen K.E. DNA damage response in prostate cancer. Cold Spring Harb Perspect Med 2019;9(1):a030486. DOI: 10.1101/cshperspect.a030486
56. Robinson D., van Allen E.M., Wu Y.M. et al. Integrative clinical genomics of advanced prostate cancer. Cell 2015;161(5):1215-28. DOI: 10.1016/j.cell.2015.05.001
57. Annala M., Vandekerkhove G., Khalaf D. et al. Circulating tumor DNA genomics correlate with resistance to abiraterone and enzalutamide in prostate cancer. Cancer Discov 2018;8(4):444-57. DOI: 10.1158/2159-8290.CD-17-0937
58. Thangavel C., Boopathi E., Liu Y. et al. RB loss promotes prostate cancer metastasis. Cancer Res 2017;77(4):982-95. DOI: 10.1158/0008-5472.CAN-16-1589
59. Ku S.Y., Rosario S., Wang Y. et al. Rb1 and Trp53 cooperate to suppress prostate cancer lineage plasticity, metastasis, and antiandrogen resistance. Science 2017;355(6320):78-83. DOI: 10.1126/science.aah4199
60. McNair C., Xu K., Mandigo A.C. et al. Differential impact of RB status on E2F1 reprogramming in human cancer. J Clin Invest 2018;128(1):341-58. DOI: 10.1172/JCI93566
61. Abida W., Cyrta J., Heller G. et al. Genomic correlates of clinical outcome in advanced prostate cancer. Proc Natl Acad Sci USA 2019;116(23):11428-36. DOI: 10.1073/pnas.1906812116
62. Annala M., Struss W.J., Warner E.W. et al. Treatment outcomes and tumor loss of heterozygosity in germline DNA repair-deficient prostate cancer. Eur Urol 2017;72(1):34-42. DOI: 10.1016/j.eururo.2017.02.023
63. Chakraborty G., Armenia J., Mazzu Y.Z. et al. Significance of BRCA2 and RB1 co-loss in aggressive prostate cancer progression. Clin Cancer Res 2020;26(8):2047-64. DOI: 10.1158/1078-0432.CCR-19-1570.
64. Матвеев В.Б., Киричек А.А., Филиппова М.Г. и др. Влияние герминальных мутаций в генах BRCA2 и CHEK2 на время до развития кастрационной резистентности у больных метастатическим гормоночувствительным раком предстательной железы. Урология 2019;(5):79-85. DOI: 10.18565/urology.2019.5.79-85
65. Матвеев В.Б., Киричек А.А., Савинкова А.В. и др. Влияние герминальных мутаций в гене CHEK2 на выживаемость до биохимического рецидива и безметастатическую выживаемость после радикального лечения у больных раком. Онкоурология 2018;14(4):53-67. DOI: 10.17650/1726-9776-2018-14-4-53-67
Рецензия
Для цитирования:
Стукань А.И., Горяинова А.Ю., Григорян М.М., Кутян В.Ф., Жданов В.С., Семиглазова Т.Ю., Имянитов Е.Н. Сигнальный механизм рецептора андрогена при раке предстательной железы: резистентность к антиандрогенной терапии и связь с генами репарации повреждений ДНК. Онкоурология. 2023;19(1):85-101. https://doi.org/10.17650/1726-9776-2023-19-1-85-101
For citation:
Stukan A.I., Goryainova A.Yu., Grigoryan M.M., Kutyan V.F., Zhdanov V.S., Semiglazova T.Yu., Imyanitov E.N. Androgen receptor signaling mechanism in prostate cancer: resistance to antiandrogen therapy and association with DNA repair genes. Cancer Urology. 2023;19(1):85-101. (In Russ.) https://doi.org/10.17650/1726-9776-2023-19-1-85-101