Вероятная роль ретроэлементов в развитии опухоли Вильмса при хромосомных синдромах
https://doi.org/10.17650/1726-9776-2022-18-4-99-107
Аннотация
В обзорной статье приведены результаты анализа накопленных в литературе данных об ассоциации опухоли Вильмса с хромосомными синдромами и поиск возможных причин данного феномена. В 10 % всех случаев нефробластома представлена наследственным опухолевым синдромом вследствие герминальных мутаций в генах-супрессорах, главным образом в гене WT1, реже в WT2, WTX, CTNNB1, TP53. Данные гены характеризуются связью с ретроэлементами, которые играют важную роль в развитии опухоли Вильмса, способствуя канцерогенезу, вызывая геномную нестабильность. Ретроэлемент LINE-1 – негативный регулятор экспрессии WT1, в то время как гены-супрессоры подавляют активность ретроэлементов. Частью патогенеза синдромов Перлмана, Беквита–Видемана, WAGR, трисомии 18, обусловленных герминальными микроделециями, является активация ретроэлементов, способствующих соматическим хромосомным перестройкам, включая делеции, инсерции и транслокации, которые характерны для спорадической опухоли Вильмса. Кроме этого, ретроэлементы являются источниками длинных некодирующих РНК и микроРНК при процессинге их транскриптов или в эволюции генов. При этом длинные некодирующие РНК влияют на развитие опухоли Вильмса различными механизмами: за счет влияния на ферроптоз (lncRNA AC007406.1, AC005208.1, LINC01770, DLGAP1-AS2, AP002761.4, STPG3-AS1, AC129507.1, AC234772.2, LINC02447, AC009570.1, ZBTB20-AS1 и LINC01179), на сигнальные пути Wnt/β-катенина (HOTAIR, MEG3), апоптоз (HAGLROS), на регуляцию экспрессии специфических микроРНК (SNHG6, MEG8, XIST, SNHG16, DLEU1, CRNDE, SNHG6, DLGAP1, OSTM1-AS1, EMX2OS, H19).
Анализ базы данных MDTE DB позволил обнаружить ассоциированные с нефробластомой микроРНК, которые происходят от ретротранспозонов. К ним относятся miR-192, -335, -378c, -562, -630, -1248. Эти молекулы перспективны в отношении возможного использования для патогенетического лечения опухоли Вильмса вследствие воздействия на патологически активированные ретротранспозоны.
Ключевые слова
Об авторе
Р. Н. МустафинРоссия
Рустам Наилевич Мустафин - доцент кафедры медицинской генетики и фундаментальной медицины, кандидат биологических наук
450008 Уфа, ул. Ленина, 3
Список литературы
1. De Sa Pereira B.M., Montalvao-de-Azevedo R., Faria P.A. et al. Association between long interspersed nuclear element-1 methylation levels and relapse in Wilms tumors. Clin Epigenetics 2017;9:128. DOI: 10.1186/s13148-017-0431-6
2. Al-Hussain T., Ali A., Akhtar M. Wilms tumor: an update. Adv Anat Pathol 2014;21(3):166–73. DOI: 10.1097/PAP.0000000000000017
3. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). Под ред. А.Д. Каприна, В.В. Старинского, А.О. Шахзадовой. М.: МНИОИ им. П.А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2021. 252 с.
4. Rassekh S.R., Rajcan-Separovic E. Comparative genomic hybridization of Wilms’ tumor. Methods Mol Biol 2013;973:249–65. DOI: 10.1007/978-1-62703-281-0_16
5. Liu E.K., Suson K.D. Syndromic Wilms tumor: a review of predisposing conditions, surveillance and treatment. Transl Androl Urol 2020;9(5):2370–81. DOI: 10.21037/tau.2020.03.27
6. Fischbach B.V., Trout K.L., Lewis J. et al. WAGR syndrome: a clinical review of 54 cases. Pediatrics 2005;116(4):984–8. DOI: 10.1542/peds.2004-0467
7. Lu M.Y., Weng W.C., Hou T.C. et al. Methylation statuses of H19DMR and KvDMR at WT2 in Wilms tumors in Taiwan. Pathol Oncol Res 2020;26(4):2153–9. DOI: 10.1007/s12253-020-00802-6
8. Scott R.H., Douglas J., Baskcomb L. et al. Constitutional 11p15 abnormalities, including heritable imprinting center mutations, cause nonsyndromic Wilms tumor. Nat Genet 2008;40(11):1329–34. DOI: 10.1038/ng.243
9. Ramos K.S., Montoya-Durango D.E., Teneng I. et al. Epigenetic control of embryonic renal cell differentiation by L1 retrotransposon. Birth Defects Res A Clin Mol Teratol 2011;91(8):693–702. DOI: 10.1002/bdra.20786
10. Мустафин Р.Н. Взаимосвязь гена ТР53 с ретроэлементами в канцерогенезе. Онкоурология 2022;18(1):136–42. DOI: 10.17650/1726-9776-2022-18-1-136-142
11. Hewitt S.M., Fraizer G.C., Saunders G.F. Transcriptional silencer of the Wilms’ tumor gene WT1 contains an Alu repeat. J Biol Chem 1995;270(30):17908–12. DOI: 10.1074/jbc.270.30.17908
12. Sahnane N., Magnoli F., Bernasconi B. et al. Aberrant DNA methylation profiles of inherited and sporadic colorectal cancer. Clin Epigenetics 2015;7:131. DOI: 10.1186/s13148-015-0165-2
13. Hermetz K.E., Surti U., Cody J.D., Rudd M.K. A recurrent translocation is mediated by homologous recombination between HERV-H elements. Mol Cytogenet 2012;5(1):6. DOI: 10.1186/1755-8166-5-6
14. Rodriguez-Martin B., Alvarez E.G., Baez-Ortega A. et al. Pan-cancer analysis of whole genomes identifies driver rearrangements promoted by LINE-1 retrotransposition. Nat Genet 2020;52:306–19. DOI: 10.1038/s41588-019-0562-0
15. Hol J.A., Jongmans M.C.J., Sudour-Bonnange H. et al. Clinical characteristics and outcomes of children with WAGR syndrome and Wilms tumor and/or nephroblastomatosis: the 30-year SIOP-RTSG experience. Cancer 2021;127(4):628–38. DOI: 10.1002/cncr.33304
16. Niemitz E.L., Feinberg A.P., Brandenburg S.A. et al. Children with idiopathic hemihypertrophy and beckwith-wiedemann syndrome have different constitutional epigenotypes associated with Wilms tumor. Am J Hum Genet 2005;77(5):887–91. DOI: 10.1086/497540
17. Scott R.H., Stiller C.A., Walker L. et al. Syndromes and constitutional chromosomal abnormalities associated with Wilms tumour. J Med Genet 2006;43(9):705–15. DOI: 10.1136/jmg.2006.041723
18. Farmakis S.G., Barnes A.M., Carey J.C. et al. Solid tumor screening recommendations in trisomy 18. Am J Med Genet A 2019;179(3):455–66. DOI: 10.1002/ajmg.a.61029
19. Morris M.R., Astuti D., Maher E.R. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. Am J Med Genet C Semin Med Genet 2013;163C(2):106–13. DOI: 10.1002/ajmg.c.31358
20. Ezaki J., Hashimoto K., Asano T. et al. Gonadal tumor in Frasier syndrome: a review and classification. Cancer Prev Res (Phila) 2015;8(4):271–6. DOI: 10.1158/1940-6207.CAPR-14-0415
21. Chan E.S., Pawel B.R., Corao D.A. et al. Immunohistochemical expression of glypican-3 in pediatric tumors: an analysis of 414 cases. Pediatr Dev Pathol 2013;16(4):272–7. DOI: 10.2350/12-06-1216-OA
22. Gullett J.C., Znoyko I.Y., Wolff D.J., Schandl C.A. Chromothripsis in two patients with renal cell carcinoma: a case series. Clin Genitourin Cancer 2017;15(1):e137–43. DOI: 10.1016/j.clgc.2016.06.005
23. Adashek J.J., Leonard A., Roszik J. et al. Cancer genetics and therapeutic opportunities in urologic practice. Cancers (Basel) 2020;12(3):710. DOI: 10.3390/cancers12030710
24. Hancks D.C. A role for retrotransposons in chromothripsis. Methods Mol Biol 2018;1769:169–81. DOI: 10.1007/978-1-4939-7780-2_11
25. Pisanic 2nd T.R., Asaka S., Lin S.F. et al. Long interspersed nuclear element 1 retrotransposons become deregulated during the development of ovarian cancer precursor lesions. Am J Pathol 2019;189(3):513–20. DOI: 10.1016/j.ajpath.2018.11.005
26. Ardeljan D., Steranka J.P., Liu C. et al. Cell fitness screens reveal a conflict between LINE-1 retrotransposition and DNA replication. Nat Struct Mol Biol 2020;27(2):168–78. DOI: 10.1038/s41594-020-0372-1
27. Ribeiro I.P., Carreira I.M., Esteves L. et al. Chromosomal breakpoints in a cohort of head and neck squamous cell carcinoma patients. Genomics 2020;112(1):297–303. DOI: 10.1016/j.ygeno.2019.02.009
28. Suzuki J., Yamaguchi K., Kajikawa M. et al. Genetic evidence that the non-homologous end-joining repair pathway is involved in LINE retrotransposition. PLoS Genet 2009;5(4):e1000461. DOI: 10.1371/journal.pgen.1000461
29. Erwin J.A., Paquola A.C.M., Singer T. et al. L1-associated genomic regions are deleted in somatic cells of the healthy human brain. Nat Neurosci 2016;19(12):1583–91. DOI: 10.1038/nn.4388
30. Hoglund M., Gisselsson D., Hansen G.B. et al. Wilms tumors develop through two distinct karyotypic pathways. Cancer Genet Cytogenet 2004;150(1):9–15. DOI: 10.1016/j.cancergencyto.2003.08.017
31. Natrajan R., Williams R.D., Hing S.N. et al. Array CGH profiling of favourable histology Wilms tumours reveals novel gains and losses associated with relapse. J Pathol 2006 210(1):49–58. DOI: 10.1002/path.2021
32. Schaub R., Burger A., Bausch D. et al. Array comparative genomic hybridization reveals unbalanced gain of the MYCN region in Wilms tumors. Cancer Genet Cytogenet 2007;172(1):61–5. DOI: 10.1016/j.cancergencyto.2006.08.010
33. Rassekh S., Chan S., Harvard C. et al. Screening for submicroscopic chromosomal rearrangements in Wilms tumor using whole genome microarrays. Cancer Genet Cytogenet 2008:182(2):84–94. DOI: 10.1016/j.cancergencyto
34. Hawthorn L., Cowell J.K. Analysis of Wilms tumors using SNP mapping arraybased comparative genomic hybridization. PLoS One 2011;6(4):e18941. DOI: 10.1371/journal.pone.0018941
35. Lobbert R.W., Klemm G., Gruttner H.P. et al. Novel WT1 mutation, 11p LOH, and t(7;12)(p22;q22) chromosomal translocation identified in Wilms’ tumor case. Genes 1998;21(4):347–50. DOI: 10.1002/(sici)1098-2264(199804)21:4<347::aid-gcc9>3.0.co;2-z
36. Han M., Rivera M.N., Batten J.M. et al. Wilms’ tumor with an apparently balanced translocation t(X;18) resulting in deletion of the WTX gene. Genes Chromosomes Cancer 2007;46(10):909–13. DOI: 10.1002/gcc.20476
37. Punnett A., Teshima I., Heon E. et al. Unique insertional translocation in a childhood Wilms’ tumor survivor detected when his daughter developed bilateral retinoblastoma. Am J Med Genet A 2003; 120A(1):105–9. DOI: 10.1002/ajmg.a.20116
38. Rauscher 3rd F.J. Chromosome translocation-mediated conversion of a tumor suppressor gene into a dominant oncogene: fusion of EWS1 to WT1 in desmoplastic small round cell tumors. Curr Top Microbiol Immunol 1997;220:151–62. DOI: 10.1007/978-3-642-60479-9_10
39. Hayes-Jordan A.A., Ma X., Menegaz B.A. et al. Efficacy of ONC201 in desmoplastic small round cell tumor. Neoplasma 2018;20(5):524–32. DOI: 10.1016/j.neo.2018.02.006
40. Liu J., Nau M.M., Zucman-Rossi J. et al. LINE-I element insertion at the t(11;22) translocation breakpoint of a desmoplastic small round cell tumor. Genes Chromosomes Cancer 1997;18(3):232–9. DOI: 10.1002/(sici)1098-2264(199703)18:3<232::aid-gcc10>3.0.co;2-k
41. Tang M.L., Xiao P., Zou J.Z. et al. Effect of LINE1-ORFp overexpression on the proliferation of nephroblastoma WT_CLS1 cells. Zhongguo Dang Dai Er Ke Za Zhi 2018;20(6):501–7. (In Chinese). DOI: 10.7499/j.issn.1008-8830.2018.06.014
42. Chang H.B., Zou J.Z., He C. et al. Association between long interspersed nuclear element-1 methylation and relative telomere length in Wilms tumor. Chin Med J (Engl) 2015;128(22):3055–61. DOI: 10.4103/0366-699.169071
43. Wei G., Qin S., Li W. et al. MDTE DB: a database for microRNAs derived from Transposable element. IEEE/ACM Trans Comput Biol Bioinform 2016;13(6):1155–60. DOI: 10.1109/TCBB.2015.2511767
44. Kelley D., Rinn J. Transposable elements reveal a stem cell specific class of long noncoding RNAs. Genome Biol 2012;13(11):R107. DOI: 10.1186/gb-2012-13-11-r107
45. Lu X., Sachs F., Ramsay L. et al. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat Struct Mol Biol 2014;21(4):423–5. DOI: 10.1038/nsmb.2799
46. Honson D.D., Macfarlan T.S. A lncRNA-like Role for LINE1s in Development. Dev Cell 2018;46(2):132–4. DOI: 10.1016/j.devcel.2018.06.022
47. Scott R.H., Murray A., Baskcomb L. et al. Stratification of Wilms tumor by genetic and epigenetic analysis. Oncotarget 2012;3(3):327–35. DOI: 10.18632/oncotarget.468
48. Gadd S., Huff V., Walz A.L. et al. A children’s oncology group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat Genet 2017;49(10):1487–94. DOI: 10.1038/ng.3940
49. Mahamdallie S., Yost S., Poyastro-Pearson E. et al. Identification of new Wilms tumour predisposition genes: an exome sequencing study. Lancet Child Adolesc Health 2019;3(5):322–31. DOI: 10.1016/S2352-4642(19)30018-5
50. Rakheja D., Chen K.S., Liu Y. et al. Somatic mutations in DROSHA and DICER1 impair microRNA biogenesis through distinct mechanisms in Wilms tumours. Nat Commun 2014;2:4802. DOI: 10.1038/ncomms5802
51. Su L., Wu A., Zhang W., Kong X. Silencing long noncoding RNA SNHG6 restrains proliferation, migration and invasion of Wilms’ tumour cell lines by regulating miR-15a. Artif Cells Nanomed Biotechnol 2019;47(1):2670–7. DOI: 10.1080/21691401.2019.1633338
52. Zhao X.S., Tao N., Zhang C. et al. Long noncoding RNA SNHG16 acts as an oncogene in Wilms’ tumor through sponging miR-200a-3p. Eur Rev Med Pharmacol Sci 2020;24(14):7562. DOI: 10.26355/eurrev_202007_22219
53. Fisher L. Retraction: long noncoding RNA DLEU1 promotes cell proliferation and migration of Wilms tumor through the miR-300/ HOXC8 axis. RSC Adv 2021;11(9):5267. DOI: 10.1039/d1ra90051j
54. Cui W.W., Sun Y.L., Chen C. et al. LncRNA CRNDE promotes the development of Wilms’ tumor by regulating microRNA-424. Eur Rev Med Pharmacol Sci 2020;24(3):1088–97. DOI: 10.26355/eurrev_202002_20159
55. Wang Y., Liu J., Yao Q. et al. LncRNA SNHG6 promotes Wilms’ tumor progression through regulating miR-429/FRS2 axis. Cancer Biother Radiopharm 2021. DOI: 10.1089/cbr.2020.3705
56. Liu Z., Pan L., Yan X., Duan X. The long noncoding RNA DLGAP1-AS2 facilitates cholangiocarcinoma progression via miR-505 and GALNT10. FEBS Open Bio 2021;11(2):413–22. DOI: 10.1002/2211-5463.13061
57. Du J., Xiao J., Zhou Y. et al. LncRNA OSTM1-AS1 acts as an oncogenic factor in Wilms’ tumor by regulating the miR-514a-3p/MELK axis. Anticancer Drugs 2022;33(8):720–30. DOI: 10.1097/CAD.0000000000001320
58. Chen Z.H., Cui M.Y., Zhang H.M. EMX2OS Dlays Wilms’ tumor progression via targeting miR-654-3p. Ann Clin Lab Sci 2022;52(1):12–20.
59. Liu H.C., Zhu W.Y., Ren L.Y. LncRNA H19 inhibits proliferation and enhances apoptosis of nephroblastoma cells by regulating the miR-675/TGFBI axis. Eur Rev Med Pharmacol Sci 2022;26(11):3800–6. DOI: 10.26355/eurrev_202206_28947
60. Zhao X.S., Tao N., Zhang C. et al. Long noncoding RNA MIAT acts as an oncogene in Wilms’ tumor through regulation of DGCR8. Eur Rev Med Pharmacol Sci 2019;23(23):10257–63. DOI: 10.26355/eurrev_201912_19663
61. Liu H., Zhang M., Zhang T. et al. Identification of a ferroptosisrelated lncRNA signature with prognosis for Wilms tumor. Transl Pediatr 2021;10(10):2418–31. DOI: 10.21037/tp-21-211
62. Yang L.L., Cao G.H., Liu Y.J., Liu C.H. Effect of LncRNA HOTAIR on the proliferation, apoptosis and drug resistance of Wilms tumor cells through Wnt/β-catenin signaling pathway. Zhonghua Zhong Liu Za Zhi 2021;43(7):769–74. DOI: 10.3760/cma.j.cn112152-20191227-00846
63. Teng G.Y., Wang Y.J., Geng M., Jiang Z.P. LncRNA MEG3 inhibits the growth, invasion and migration of Wilms’ tumor via Wnt/β-catenin pathway. Eur Rev Med Pharmacol Sci 2020;24(19):9899–907. DOI: 10.26355/eurrev_202010_23200
64. Li P., Zhang K., Tang S., Tang W. Knockdown of lncRNA HAGLROS inhibits metastasis and promotes apoptosis in nephroblastoma cells by inhibition of autophagy. Bioengineered 2022;13(3):7552–62. DOI: 10.1080/21655979.2021.2023984
65. Zheng H., Li B.H., Liu C. et al. Comprehensive analysis of lncRNA-mediated ceRNA crosstalk and identification of prognostic biomarkers in Wilms’ tumor. Biomed Res Int 2020;2020:4951692. DOI: 10.1155/2020/4951692
66. Liu C.L., Wang W.H., Sun Y.L. et al. MiR-144-3p inhibits the proliferation and metastasis of pediatric Wilms’ tumor cells by regulation Girdin. Eur Rev Med Pharmacol Sci 2018;22(22):7671–8. DOI: 10.26355/eurrev_201811_16384
67. Chen W., Zhuang J., Gong L. et al. Investigating the dysfunctional pathogenesis of Wilms’ tumor through a multidimensional integration strategy. Ann Transl Med 2019;7(7):136. DOI: 10.21037/atm.2019.03.37
68. Ludwig N., Werner T.V., Backes C. et al. Combining miRNA and mRNA expression profiles in Wilms tumor subtypes. Int J Mol Sci 2016;17(4):475. DOI: 10.3390/ijms17040475
69. Senanayake U., Das S., Vesely P. et al. miR-192, miR-194, miR-215, miR-200c and miR-141 are downregulated and their common target ACVR2B is strongly expressed in renal childhood neoplasms. Carcinogenesis 2012;33(5):1014–21. DOI: 10.1093/carcin/bgs126
70. Drake K.M., Ruteshouser E.C., Natrajan R. et al. Loss of heterozygosity at 2q37 in sporadic Wilms’ tumor: putative role for miR-562. Clin Cancer Res 2009;15(19):5985–92.
71. Yu Q., Zheng B., Ji X. et al. miR-378c suppress Wilms tumor development via negatively regulating CAMKK2. Acta Biochim Biophys Sin (Shanghai) 2021;53(6):739–47. DOI: 10.1093/abbs/gmab047
72. Gong Y., Zou B., Chen J. et al. Potential five-MircoRNA signature model for the prediction of prognosis in patients with Wilms tumor. Med Sci Monit 2019;25:5435–44. DOI: 10.12659/MSM.916230
Рецензия
Для цитирования:
Мустафин Р.Н. Вероятная роль ретроэлементов в развитии опухоли Вильмса при хромосомных синдромах. Онкоурология. 2022;18(4):99-107. https://doi.org/10.17650/1726-9776-2022-18-4-99-107
For citation:
Mustafin R.N. The probable role of retroelements in the development of Wilms’ tumor in chromosomal syndromes. Cancer Urology. 2022;18(4):99-107. (In Russ.) https://doi.org/10.17650/1726-9776-2022-18-4-99-107