Preview

Онкоурология

Расширенный поиск

Радиационно-индуцированная эректильная дисфункция у больных раком предстательной железы: современные технологии лучевого лечения

https://doi.org/10.17650/1726-9776-2020-16-3-143-152

Полный текст:

Аннотация

За последние годы в терапии рака предстательной железы произошли существенные изменения. Современные технологии лучевого лечения начинают занимать лидирующие позиции не только при локализованных и местно-распространенных формах заболевания, но и в случае олигометастатического процесса. Это побуждает естественный интерес к различным аспектам лучевой терапии рака предстательной железы, в частности ее влиянию на статус эректильной функции. Анализ отечественной литературы свидетельствует о фактически полном отсутствии публикаций, посвященных возможностям лучевой терапии сохранять потенцию после лечения. Целью настоящей работы явилась потребность освещения данной критически важной проблемы.

Об авторах

Р. В. Новиков
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова Минздрава России; Санкт-Петербургский государственный университет
Россия

Новиков Роман Владимирович.
197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68; 199034 Санкт-Петербург, Университетская набережная, 7—9.



С. Н. Новиков
Национальный медицинский исследовательский центр онкологии им. Н.Н. Петрова Минздрава России
Россия

197758 Санкт-Петербург, пос. Песочный, ул. Ленинградская, 68.



В. В. Протощак
Военно-медицинская академия им. С.М. Кирова Минобороны России
Россия
194044 Санкт-Петербург, ул. Академика Лебедева, 6.


И. Б. Джалилов
Санкт-Петербургский государственный университет
Россия
199034 Санкт-Петербург, Университетская набережная, 7—9.


Список литературы

1. Hamdy F.C., Donovan J.L., Lane J.A. et al. 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. N Engl J Med 2016;375(15):1415-24. DOI: 10.1056/ NEJMoa1606220.

2. Jackson W.C., Silva J., Hartman H.E. et al. Stereotactic body radiation therapy for localized prostate cancer: a systematic review and meta-analysis of over 6,000 patients treated on prospective studies. Int J Radiat Oncol Biol Phys 2019;104(4):778-9. DOI: 10.1016/j.ijrobp.2019.03.051.

3. Wang Z., Ni Y., Chen J. et al. The efficacy and safety of radical prostatectomy and radiotherapy in high-risk prostate cancer: a systematic review and meta-analysis. World J Surg Oncol 2020;18(1):42. DOI: 10.1186/s12957-020-01824-9.

4. Mohler J.L., Antonarakis E.S., Armstrong A.J. Prostate cancer, version 2.2019, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2019;17(5):479-505. DOI: 10.6004/jnccn.2019.0023.

5. Mahase S.S., D'Angelo D., Kang J. et al. Trends in the use of stereotactic body radiotherapy for treatment of prostate cancer in the United States. JAMA Netw Open 2020;3(2):e1920471. DOI: 10.1001/jamanetworkopen.2019.20471.

6. Gaither T.W., Awad M.A., Osterberg E.C. et al. The natural history of erectile dysfunction after prostatic radiotherapy: a systematic review and meta-analysis. J Sex Med 2017;14(9):1071-8. DOI: 10.1016/j.jsxm.2017.07.010.

7. Mahmood J., Shamah A.A., Creed T.M. et al. Radiation-induced erectile dysfunction: recent advances and future directions. Adv Radiat Oncol 2016;1(3):161-9. DOI: 10.1016/j.adro.2016.05.003.

8. Nolan M.W., Marolf A.J., Ehrhart E.J. et al. Pudendal nerve and internal pudendal artery damage may contribute to radiation-induced erectile dysfunction. Int J Radiat Oncol Biol Phys 2015;91(4):796-806. DOI: 10.1016/j.ijrobp.2014.12.025.

9. Incrocci L. Radiotherapy for prostate cancer and sexual health. Transl Androl Urol 2015;4(2):124-30. DOI: 10.3978/ j.issn.2223-4683.2014.12.08.

10. Ciabatti S., Ntreta M., Buwenge M. et al. Dominant intraprostatic lesion boosting in sexual-sparing radiotherapy of prostate cancer: a planning feasibility study. Med Dosim 2019;44(4):356-64. DOI: 10.1016/j.meddos.2019.01.008.

11. McLaughlin P.W., Troyer S., Berri S. et al. Functional anatomy of the prostate: implications for treatment planning. Int J Radiation Oncology Biol Phys 2005;63(2): 479-91. DOI: 10.1016/j.ijrobp.2005.02.036.

12. McLaughlin P.W., Narayana V., Meirovitz A. et al. Vessel-sparing prostate radiotherapy: dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI. Vessel-sparing prostate radiotherapy: dose limitation to critical erectile vascular structures (internal pudendal artery and corpus cavernosum) defined by MRI. Int J Radiat Oncol Biol Phys 2005;61(1):20-31. DOI: 10.1016/j.ijrobp.2004.04.070.

13. Lee J.Y., Spratt D.E., Liss A.L., McLaughlin P.W. Vessel-sparing radiation and functional anatomy-based preservation for erectile function after prostate radiotherapy. Lancet Oncol 2016;17(5):e198-208. DOI: 10.1016/S1470-2045(16)00063-2.

14. Новиков Р.В., Пономарева О.И., Летинский С.С., Новиков С.Н. Анатомо-топографическое обоснование «сосудосохраняющей» лучевой терапии рака предстательной железы. Экспериментальная и клиническая урология 2020;(2):84-91. DOI: 10.29188/22228543-2020-12-2-84-91.

15. Dean R.C., Lue T.F. Physiology of penile erection and pathophysiology of erectile dysfunction. Urol Clin North Am 2005;32(4):379-95. DOI: 10.1016/j.ucl.2005.08.007.

16. Mulhall J.P., Yonover P.M. Correlation of radiation dose and impotence risk after three-dimensional conformal radiotherapy for prostate cancer. Urology 2001;58(5):828. DOI: 10.1016/s0090-4295(01)01415-7.

17. Roach M. 3rd, Nam J., Gagliard G. et al. Radiation dose-volume effects and the penile bulb. Int J Radiat Oncol Biol Phys 2010;76(3):130-4. DOI: 10.1016/j.ijrobp.2009.04.094.

18. Magli A., Giangreco M., Crespi M. et al. Erectile dysfunction after prostate threedimensional conformal radiation therapy. Correlation with the dose to the penile bulb. Strahlenther Onkol 2012; 188(11):997-1002. DOI: 10.1007/s00066-012-0227-8.

19. Murray J., Gulliford S., Griffin C. et al. Evaluation of erectile potency and radiation dose to the penile bulb using image guided radiotherapy in the CHHiP Trial. Clin Transl Radiat Oncol 2020;21(1):77-84. DOI: 10.1016/j.ctro.2019.12.006.

20. Rasmusson E., Gunnlaugsson A., Wieslander E. et al. Erectile dysfunction and absorbed dose to penile base structures in a randomized trial comparing ultrahypofractionated and conventionally fractionated radiation therapy for prostate cancer. Int J Radiat Oncol Biol Phys 2020;107(1):143-51. DOI: 10.1016/j.ijrobp.2020.01.022.

21. Zaorsky N.G., Yu J.B., McBride S.M. et al. Prostate Cancer Radiotherapy Recommendations in Response to COVID-19. Adv Radiat Oncol 2020. Online ahead of print. DOI: 10.1016/j.adro.2020.03.010.

22. Fuller D.B. Prostate stereotactic body radiotherapy — methods, rationale, outcomes and future directions. Chapter in Stereotactic body radiotherapy. A practical guide. Eds.: A. Gaya, A. Mahadeva. London: Springer-Verlag, 2015. Pp. 195-224.

23. Канаев С.В., Новиков С.Н., Мельник Ю.С. и др. Методология стереотаксической лучевой терапии рака предстательной железы. Вопросы онкологии 2017;63(2):287-93.

24. Seppala J., Suilamo S., Tenhunen M. et al. Dosimetric comparison and evaluation of 4 stereotactic body radiotherapy techniques for the treatment of prostate cancer. Technol Cancer Res Treat 2017;16(2):238-45. DOI: 10.1177/1533034616682156.

25. Hossain S., Xia P., Huang K. et al. Dose gradient near target-normal structure interface for nonisocentric Cyberknife and isocentric intensity-modulated body radiotherapy for prostate cancer. Int J Radiat Oncol Biol Phys 2010;78(1):58-63. DOI: 10.1016/j.ijrobp.2009.07.1752.

26. Spratt D.E., Lee J.Y., Dess R.T. et al. Vessel-sparing radiotherapy for localized prostate cancer to preserve erectile function: a single-arm phase 2 trial. Eur Urol 2017;72(4):617-24. DOI: 10.1016/j.eururo.2017.02.007.

27. Samlali H., Udrescu C., Lapierre A. et al. Prospective evaluation of a specific technique of sexual function preservation in external beam radiotherapy for prostate cancer. Br J Radiol 2017;90(1078): 20160877. DOI: 10.1259/bjr.20160877.

28. Gillan C., Kirilova A., Landon A. et al. Radiation dose to the internal pudendal arteries from permanent-seed prostate brachytherapy as determined by time-of-flight MR angiography. Int J Radiat Oncol Biol Phys 2006;65(3):688-93 DOI: 10.1016/j.ijrobp.2006.01.037.

29. Chasseray M., Dissaux G., Bourbonne V. et al. Dose to the penile bulb and individual patient anatomy are predictive of erectile dysfunction in men treated with 125I low dose rate brachytherapy for localized prostate cancer. Acta Oncol 2019;58(7):1029-35. DOI: 10.1080/0284186X.2019.1574981.

30. Van der Wielen G.J., Mulhall J.P., Incrocci L. Erectile dysfunction after radiotherapy for prostate cancer and radiation dose to the penile structures: a critical review. Radiother Oncol 2007;84(2):107-13. DOI: 10.1016/j.radonc.2007.07.018.

31. Mahmood J., Connors C.Q., Alexander A.A. et al. Cavernous nerve injury by radiation therapy may potentiate erectile dysfunction in rats. Int J Radiat Oncol Biol Phys 2017;99(3):680-8. DOI: 10.1016/j.ijrobp.2017.06.2449.

32. Ashcraft K.A., Hannan J.L., Eichenbaum G. et al. Clarifying the relative impacts of vascular and nerve injury that culminate in erectile dysfunction in a pilot study using a rat model of prostate irradiation and a thrombopoietin mimetic. Int J Radiat Oncol Biol Phys 2019;103(5):1212-20. DOI: 10.1016/j.ijrobp.2018.11.064.

33. Prado K., Chin A. How nervesparing technique has been applied to radiotherapy? Asian J Androl 2016;18(6):898-9. DOI: 10.4103/1008-682X.184995.

34. Alsaid B., Bessede T., Diallo D. et al. Division of autonomic nerves within the neurovascular bundles distally into corpora cavernosa and corpus spongiosum components: immunohistochemical confirmation with three-dimensional reconstruction. Eur Urol 2011;59(6):902-9. DOI: 10.1016/j.eururo.2011.02.031.

35. Liss A., Zhou J., Evans C. et al. Anatomic variability of the neurovascular elements defined by MRI. Brachytherapy 2014;13(1):S42-3. DOI: 10.1016/j.brachy.2014.02.267.

36. Villers A., McNeal J.E., Redwine E.A. et al. The role of perineural space invasion in the local spread of prostatic adenocarcinoma. J Urol 1989;142(3):763-8. DOI: 10.1016/s0022-5347(17)38881-x.

37. Chao K.K., Goldstein N.S., Yan D. et al. Clinicopathologic analysis of extracapsular extension in prostate cancer: should the clinical target volume be expanded posterolaterally to account for microscopic extension? Int J Radiat Oncol Biol Phys 2006;65(4):999-1007. DOI: 10.1016/j.ijrobp.2006.02.039.

38. Inoue S., Shiina H., Hiraoka T. et al. Retrospective analysis of the distance between the neurovascular bundle and prostate cancer foci in radical prostatectomy specimens: its clinical implication in nerve-sparing surgery. BJU Int 2009;104(8):1085-90. DOI: 10.1111/j.1464-410X.2009.08592.x.

39. Cassidy R.J., Nour S.G., Liu T. et al. Reproducibility in contouring the neurovascular bundle for prostate cancer radiation therapy. Pract Radiat Oncol 2018;8(3):e125-31. DOI: 10.1016/j.prro.2017.08.001.

40. Roach D., Holloway L.C., Jameson M.G. et al. Multi-observer contouring of male pelvic anatomy: highly variable agreement across conventional and emerging structures of interest. J Med Imaging Radiat Oncol 2019;63(2):264-71. DOI: 10.1111/1754-9485.12844.

41. Cassidy R.J., Yang X., Liu T. et al. Neurovascular bundle-sparing radiotherapy for prostate cancer using MRI-CT registration: a dosimetric feasibility study. Med Dosim 2016;41(4):339-43. DOI: 10.1016/j.meddos.2016.08.003.

42. Johansson A.K., Lennernas B., Isacsson U. Neurovascular bundle infiltration can explain local relapses using conformal radiotherapy of prostate cancer. Anticancer Res 2017;37(4):1825-30. DOI: 10.21873/anticanres.11517.

43. Leiker A.J., Rezaeian N.H., Laine A.M. et al. Prostate cancer neurovascular element sparing with stereotactic ablative radiation therapy (SAbR): a pilot dosimetric study for the POTEN-C Trial. Int J Radiat Oncol Biol Phys 2018;102(3):e125. DOI: 10.1016/j.ijrobp.2018.07.335.

44. Новиков Р.В. Фокальная брахитерапия рака предстательной железы: современные тенденции развития методики. Вестник Российского научного центра рентгенрадиологии Минздрава России 2017;17(2)(электронный журнал).

45. Peters M., van Son M.J., Moerland M.A. et al. MRI-Guided ultrafocal HDR brachytherapy for localized prostate cancer: median 4-year results of a feasibility study. Int J Radiat Oncol Biol Phys 2019;104(5):1045-53. DOI: 10.1016/j.ijrobp.2019.03.032.

46. Andrzejewski P., Kuess P., Knausl B. et al. Feasibility of dominant intraprostatic lesion boosting using advanced photon-, proton- or brachytherapy. Radiother Oncol 2015;117(3):509-14. DOI: 10.1016/j.radonc.2015.07.028.

47. Zaorsky N.G., Davis B.J., Nguyen P.L. et al. The evolution of brachytherapy for prostate cancer. Nat Rev Urol 2017;14(7):415-39. DOI: 10.1038/nrurol.2017.76.

48. Eade T., Hruby G., Booth J. et al. Results of a prospective dose escalation study of linear accelerator-based virtual brachytherapy (BOOSTER) for prostate cancer; virtual HDR brachytherapy for prostate cancer. Adv Radiat Oncol 2019;4(4):623-30. DOI: 10.1016/j.adro.2019.03.015.

49. Chen M., Zhang Q., Zhang C. et al. Comparison of 68Ga-prostate-specific membrane antigen (PSMA) positron emission tomography/computed tomography (PET/CT) and multiparametric magnetic resonance imaging (MRI) in the evaluation of tumor extension of primary prostate cancer. Transl Androl Urol 2020;9(2):382-90. DOI: 10.21037/tau.2020.03.06.

50. Zamboglou C., Thomann B., Koubar K. et al. Focal dose escalation for prostate cancer using 68Ga-HBED-CC PSMA PET/CT and MRI: a planning study based on histo-logy reference. Radiat Oncol 2018;13(1):81. DOI: 10.1186/s13014-018-1036-8.

51. Bettermann A.S., Zamboglou C., Kiefer S. et al. [68Ga-]PSMA-11 PET/CT and multiparametric MRI for gross tumor volume delineation in a slice by slice analysis with whole mount histopathology as a reference standard-implications for focal radiotherapy planning in primary prostate cancer. Radiother Oncol 2019;141:214-9. DOI: 10.1016/j.radonc.2019.07.005.

52. Feutren T., Herrera F.G. Prostate irradiation with focal dose escalation to the intraprostatic dominant nodule: a systematic review. Prostate Int 2018;6(3):75-87. DOI: 10.1016/j.prnil.2018.03.005.

53. Leiker A.J., Desai N.B., Folkert M.R. Rectal radiation dose-reduction techniques in prostate cancer: a focus on the rectal spacer. Future Oncol 2018;14(26):2773-88. DOI: 10.2217/fon-2018-0286.

54. Karsh L.I., Gross E.T., Pieczonka C.M. et al. Absorbable hydrogel spacer use in prostate radiotherapy: a comprehensive review of phase 3 clinical trial published data. Urology 2018;115(1):39-44. DOI: 10.1016/j.urology.2017.11.016.

55. Hamstra D.A., Mariados N., Sylvester J. et al. Sexual quality of life following prostate intensity modulated radiation therapy (IMRT) with a rectal/prostate spacer: secondary analysis of a phase 3 trial. Pract Radiat Oncol 2018;8(1):e7-15. DOI: 10.1016/j.prro.2017.07.008.

56. Xiang H.F., Lu H., Efstathiou J.A. et al. Dosimetric impacts of endorectal balloon in Cyberknife stereotactic body radiation therapy (SBRT) for early-stage prostate cancer. J Appl Clin Med Phys 2017;18(3):37-43. DOI: 10.1002/acm2.12063.

57. Ardekani M.A., Ghaffari H., Navaser M. et al. Effectiveness of rectal displacement devices in managing prostate motion: a systematic review. Strahlenther Onkol 2020. DOI: 10.1007/s00066-020-01633-9. Online ahead of print.

58. Jaccard M., Lamanna G., Dubouloz A. et al. Dose optimization and endorectal balloon for internal pudendal arteries sparing in prostate SBRT. Phys Med 2019;61(1):28-32. DOI: 10.1016/j.ejmp.2019.04.008.


Для цитирования:


Новиков Р.В., Новиков С.Н., Протощак В.В., Джалилов И.Б. Радиационно-индуцированная эректильная дисфункция у больных раком предстательной железы: современные технологии лучевого лечения. Онкоурология. 2020;16(3):143-152. https://doi.org/10.17650/1726-9776-2020-16-3-143-152

For citation:


Novikov R.V., Novikov S.N., Protoshchak V.V., Dzhalilov I.B. Radiation-induced erectile dysfunction in patients with prostate cancer: current methods of radiotherapy. Cancer Urology. 2020;16(3):143-152. (In Russ.) https://doi.org/10.17650/1726-9776-2020-16-3-143-152

Просмотров: 55


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1726-9776 (Print)
ISSN 1996-1812 (Online)
X